A024000 a(n) = 1 - n.
1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55, -56
Offset: 0
Examples
a(4) = -3 because there are 6 derangements with one 4-cycle with weight -1 and 3 derangements with two 2-cycles with weight +1. - _Michael Somos_, Jan 19 2011
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[1-n: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
-
Maple
A024000:=n->1-n: seq(A024000(n), n=0..100); # Wesley Ivan Hurt, Mar 02 2016
-
Mathematica
CoefficientList[Series[(1 - 2 x)/(1 - x)^2, {x, 0, 60}], x] Range[0, 60]! CoefficientList[Series[Exp[x] (1 - x), {x, 0, 60}], x] 1-Range[0,60] (* Harvey P. Dale, Sep 18 2013 *) Flatten[NestList[(#/.x_/;x>1->Sequence[x,2x])-1&,{1},60]] (* Robert G. Wilson v, Mar 02 2016 *)
-
PARI
{a(n) = 1 - n} /* Michael Somos, Jan 19 2011 */
Formula
E.g.f.: (1-x)*exp(x).
a(n) = Sum_{k=0..n} A094816(n,k)*(-1)^k (alternating row sums of Poisson-Charlier coefficient matrix).
O.g.f.: (1-2*x)/(1-x)^2. a(n+1) = A001489(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1)-a(n-2) for n>1. - Wesley Ivan Hurt, Mar 02 2016
Comments