A024003 a(n) = 1 - n^5.
1, 0, -31, -242, -1023, -3124, -7775, -16806, -32767, -59048, -99999, -161050, -248831, -371292, -537823, -759374, -1048575, -1419856, -1889567, -2476098, -3199999, -4084100, -5153631, -6436342, -7962623, -9765624, -11881375, -14348906, -17210367, -20511148
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..555
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A024049.
Programs
-
Magma
[1-n^5: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
-
Mathematica
1-Range[0,50]^5 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *) CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,0,-31,-242,-1023,-3124},30] (* Harvey P. Dale, May 18 2019 *)
-
PARI
x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ G. C. Greubel, May 11 2017
Formula
From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.
E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)
Extensions
More terms from Harvey P. Dale, Feb 22 2016