A024165 Number of integer-sided triangles with sides a,b,c, a b - a.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 4, 2, 2, 4, 4, 2, 6, 4, 4, 6, 6, 4, 9, 6, 6, 9, 9, 6, 12, 9, 9, 12, 12, 9, 16, 12, 12, 16, 16, 12, 20, 16, 16, 20, 20, 16, 25, 20, 20, 25, 25, 20, 30, 25, 25, 30, 30, 25, 36, 30, 30, 36, 36, 30, 42, 36, 36, 42, 42, 36, 49, 42, 42, 49, 49
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..999
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,0,1,-1,0,-1,-1,0,0,1).
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 100); [0,0,0,0,0,0,0,0,0,0,0,0] cat Coefficients(R!( x^13/((1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Jul 03 2021 -
Mathematica
LinearRecurrence[{0,0,1,1,0,1,-1,0,-1,-1,0,0,1},{0,0,0,0,0,0,0,0,0,0,0,0,1},100] (* Harvey P. Dale, Sep 04 2017 *)
-
PARI
a(n) = ((n-1)\3 - n\4)*((n-1)\3 + n\4 - n\2) \\ Hoang Xuan Thanh, Aug 31 2025
-
Sage
def A024165_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( x^13/((1-x^3)*(1-x^4)*(1-x^6)) ).list() a=A024165_list(100); a[1:] # G. C. Greubel, Jul 03 2021
Formula
G.f.: x^13/((1-x^3)*(1-x^4)*(1-x^6)). - Tani Akinari, Nov 04 2014
From Robert Israel, Nov 04 2014: (Start)
a(n) = a(n-3) + a(n-4) + a(n-6) - a(n-7) - a(n-9) - a(n-10) + a(n-13) for n >= 14.
a(6*n) = (2*n^2 - 8*n + 7 + (-1)^n)/8, n >= 1.
a(6*n+1) = a(6*n+4) = a(6*n+5) = (2*n^2 - 1 + (-1)^n)/8.
a(6*n+2) = a(6*n+3) = (2*n^2 - 4*n + 1 - (-1)^n)/8. (End)
From Hoang Xuan Thanh, Aug 31 2025: (Start)
a(n) = floor((n^2 -5*n +40 -(n-13)*(3*(-1)^n +8*((n+2) mod 3)) -12*((n+5) mod 6))/144).
a(n) = (floor((n-1)/3) - floor(n/4))*(floor((n-1)/3) + floor(n/4) - floor(n/2)). (End)
Comments