cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024165 Number of integer-sided triangles with sides a,b,c, a b - a.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 4, 2, 2, 4, 4, 2, 6, 4, 4, 6, 6, 4, 9, 6, 6, 9, 9, 6, 12, 9, 9, 12, 12, 9, 16, 12, 12, 16, 16, 12, 20, 16, 16, 20, 20, 16, 25, 20, 20, 25, 25, 20, 30, 25, 25, 30, 30, 25, 36, 30, 30, 36, 36, 30, 42, 36, 36, 42, 42, 36, 49, 42, 42, 49, 49
Offset: 1

Views

Author

Keywords

Comments

Same as A025828 with zeros prepended. - Joerg Arndt, Nov 04 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    [0,0,0,0,0,0,0,0,0,0,0,0] cat Coefficients(R!( x^13/((1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Jul 03 2021
    
  • Mathematica
    LinearRecurrence[{0,0,1,1,0,1,-1,0,-1,-1,0,0,1},{0,0,0,0,0,0,0,0,0,0,0,0,1},100] (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    a(n) = ((n-1)\3 - n\4)*((n-1)\3 + n\4 - n\2) \\ Hoang Xuan Thanh, Aug 31 2025
  • Sage
    def A024165_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( x^13/((1-x^3)*(1-x^4)*(1-x^6)) ).list()
    a=A024165_list(100); a[1:] # G. C. Greubel, Jul 03 2021
    

Formula

G.f.: x^13/((1-x^3)*(1-x^4)*(1-x^6)). - Tani Akinari, Nov 04 2014
From Robert Israel, Nov 04 2014: (Start)
a(n) = a(n-3) + a(n-4) + a(n-6) - a(n-7) - a(n-9) - a(n-10) + a(n-13) for n >= 14.
a(6*n) = (2*n^2 - 8*n + 7 + (-1)^n)/8, n >= 1.
a(6*n+1) = a(6*n+4) = a(6*n+5) = (2*n^2 - 1 + (-1)^n)/8.
a(6*n+2) = a(6*n+3) = (2*n^2 - 4*n + 1 - (-1)^n)/8. (End)
From Hoang Xuan Thanh, Aug 31 2025: (Start)
a(n) = floor((n^2 -5*n +40 -(n-13)*(3*(-1)^n +8*((n+2) mod 3)) -12*((n+5) mod 6))/144).
a(n) = (floor((n-1)/3) - floor(n/4))*(floor((n-1)/3) + floor(n/4) - floor(n/2)). (End)