A024215 Sum of squares of first n positive integers congruent to 1 mod 3.
1, 17, 66, 166, 335, 591, 952, 1436, 2061, 2845, 3806, 4962, 6331, 7931, 9780, 11896, 14297, 17001, 20026, 23390, 27111, 31207, 35696, 40596, 45925, 51701, 57942, 64666, 71891, 79635, 87916, 96752, 106161, 116161, 126770, 138006, 149887, 162431, 175656, 189580
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A016777 (positive integers congruent to 1 mod 3).
Programs
-
Magma
[n*(6*n^2-3*n-1)/2: n in [1..40]]; // Vincenzo Librandi, Oct 10 2011
-
Mathematica
a[n_] := n*(6*n^2 - 3*n - 1)/2; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *) Accumulate[Range[1,202,3]^2] (* Harvey P. Dale, Aug 24 2019 *)
-
PARI
a(n)=n*(6*n^2-3*n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[n*(6*n^2-3*n-1)/2 for n in (1..40)] # G. C. Greubel, Nov 23 2018
Formula
a(n) = n*(6*n^2 - 3*n - 1)/2.
G.f.: x*(1 + 13*x + 4*x^2) / (x-1)^4. - R. J. Mathar, Oct 08 2011
2*a(n) = A213826(n). - Clark Kimberling, Jul 04 2012
E.g.f.: (1/2)*(2*x + 15*x^2 + 6*x^3)*exp(x). - Franck Maminirina Ramaharo, Nov 23 2018