cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024305 a(n) = 2*(n+1) + 3*n + ... + (k+1)*(n+2-k), where k = floor((n+1)/2).

Original entry on oeis.org

4, 6, 17, 22, 43, 52, 86, 100, 150, 170, 239, 266, 357, 392, 508, 552, 696, 750, 925, 990, 1199, 1276, 1522, 1612, 1898, 2002, 2331, 2450, 2825, 2960, 3384, 3536, 4012, 4182, 4713, 4902, 5491, 5700, 6350, 6580, 7294, 7546, 8327, 8602, 9453, 9752, 10676, 11000, 12000
Offset: 1

Views

Author

Keywords

Crossrefs

Bisection: 2*A051925(n).

Programs

  • Magma
    b:= func< n | (1-(-1)^n)/2 >;
    [(2*n^3 + 3*(6 +b(n))*n^2 + 2*(14 +9*b(n))*n + 27*b(n))/24 : n in [1..50]] // G. C. Greubel, Jul 12 2022
    
  • Maple
    seq(sum((i+1)*(k-i+2), i=1..ceil(k/2)), k=1..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[Ceiling[n/2]*(-2*Ceiling[n/2]^2+3n*Ceiling[n/2]+9n+14)/6,{n,100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
  • SageMath
    def b(n): return (1-(-1)^n)/2
    [(2*n^3 + 3*(6 +b(n))*n^2 + 2*(14 +9*b(n))*n + 27*b(n))/24 for n in (1..50)] # G. C. Greubel, Jul 12 2022

Formula

From Vladeta Jovovic, Jan 01 2003: (Start)
a(n) = (1/48)*(4*n^3 + (3*(-1)^(n+1) + 39)*n^2 + (18*(-1)^(n+1) + 74)*n + 27*(-1)^(n+1) + 27).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
G.f.: x*(4 + 2*x - x^2 - x^3)/((1+x)^3*(1-x)^4). (End)
a(n) = Sum_{i=1..ceiling(n/2)} (i+1)*(n-i+2) = ceiling(n/2)*(-2*ceiling(n/2)^2 + 3n*ceiling(n/2) + 9*n + 14)/6. - Wesley Ivan Hurt, Sep 20 2013
E.g.f.: (1/24)*( x*(69 + 24*x + 2*x^2)*cosh(x) + (27 + 48*x + 27*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Name simplified by Jon E. Schoenfield, Jun 12 2019