cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023855 a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + ... + (n+1-k)*k, where k = floor((n+1)/2).

Original entry on oeis.org

1, 2, 7, 10, 22, 28, 50, 60, 95, 110, 161, 182, 252, 280, 372, 408, 525, 570, 715, 770, 946, 1012, 1222, 1300, 1547, 1638, 1925, 2030, 2360, 2480, 2856, 2992, 3417, 3570, 4047, 4218, 4750, 4940, 5530, 5740, 6391, 6622, 7337, 7590, 8372, 8648, 9500, 9800, 10725, 11050
Offset: 1

Views

Author

Keywords

Comments

Given a rectangle of perimeter 2*n one can form rectangles having this perimeter for a number of different rectangles or squares depending on how large 2*n is. The sequence lists the total areas of all such rectangles for each 2*n. - J. M. Bergot, Sep 14 2011
Antidiagonal sums of triangle A075362. - L. Edson Jeffery, Jan 20 2012

Crossrefs

Programs

  • Haskell
    a023855 n = sum $ zipWith (*) [1 .. div (n+1) 2] [n, n-1 ..]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jul 12 2022
    
  • Maple
    seq(-(1/3)*floor((k+1)/2)^3 + (k/2)*floor((k+1)/2)^2 + ((3*k+2)/6)*floor((k+1)/2), k=1..100); # Wesley Ivan Hurt, Sep 18 2013
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1}, {1,2,7,10,22,28,50}, 60] (* Vincenzo Librandi, Jan 23 2012 *)
    Table[-Ceiling[n/2] (Ceiling[n/2] + 1) (2 Ceiling[n/2] - 3 n - 2)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
  • PARI
    a(n)=if(n%2, (n+1)*(n+3)*(2*n+1)/24, n*(n+1)*(n+2)/12)
    
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+x+2*x^2)/((1-x)^4*(1+x)^3)) \\ Altug Alkan, Mar 03 2018
    
  • SageMath
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (n+1)*(n+3)*(2*n+1)/24 if n is odd, or n*(n+1)*(n+2)/12 if n is even.
G.f.: x*(1+x+2*x^2)/((1-x)^4*(1+x)^3). - Ralf Stephan, Apr 28 2004
a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+1) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2)-3n-2)/6. - Wesley Ivan Hurt, Sep 19 2013
a(n) = (4*n^3 + 15*n^2 + 14*n + 3 - 3*(n+1)^2*(-1)^n)/48. - Luce ETIENNE, Oct 22 2014
a(n) = (A000292(n) + (n mod 2)*(ceiling(n/2))^2)/2. - Luc Rousseau, Feb 25 2018
E.g.f.: (1/24)*( x*(21+12*x+2*x^2)*cosh(x) + (3+12*x+15*x^2+2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Formula, program, and slight revision by Charles R Greathouse IV, Feb 23 2010

A023856 a(n) = 1*(n+1-1) + 2*(n+1-2) + ... + k*(n+1-k), where k = floor((n+1)/2).

Original entry on oeis.org

2, 3, 10, 13, 28, 34, 60, 70, 110, 125, 182, 203, 280, 308, 408, 444, 570, 615, 770, 825, 1012, 1078, 1300, 1378, 1638, 1729, 2030, 2135, 2480, 2600, 2992, 3128, 3570, 3723, 4218, 4389, 4940, 5130, 5740, 5950, 6622, 6853, 7590, 7843, 8648, 8924, 9800, 10100, 11050, 11375
Offset: 1

Views

Author

Keywords

Comments

Or, a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n-k+1), where k = floor( n/2 ) and s = (natural numbers).
Sum of the areas of the distinct rectangles with positive integer length and width such that L + W = n + 2, W < L. For example, a(5) = 28; the rectangles are 1 X 6, 2 X 5 and 3 X 4. The sum of the areas is then 1*6 + 2*5 + 3*4 = 28. - Wesley Ivan Hurt, Nov 12 2017

Crossrefs

Programs

  • Magma
    [(n+2)*(4*n^2 + 13*n + 6 - 3*(n+2)*(-1)^n)/48 : n in [1..80]]; // Wesley Ivan Hurt, Nov 29 2017
    
  • Maple
    seq(add(i*(k-i+2), i=1..ceil(k/2)), k=1..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Ceiling[n/2]*(Ceiling[n/2]+1)*(2*Ceiling[n/2]-3n-5)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{2,3,10,13,28,34,60},60] (* Harvey P. Dale, Jan 09 2017 *)
  • PARI
    my(x='x+O('x^99)); Vec(x*(2+x+x^2)/((1+x)^3*(x-1)^4)) \\ Altug Alkan, Dec 17 2017
    
  • SageMath
    [(n+2)*(4*n^2 +13*n +6 -3*(n+2)*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (n+2)*(4*n^2 + 13*n + 6 - 3(n+2)(-1)^n)/48.
a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+2) = -ceiling(n/2)*(ceiling(n/2) + 1)*(2*ceiling(n/2) - 3n - 5)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f.: x*(2+x+x^2) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7). - Wesley Ivan Hurt, Dec 01 2017
a(n - 1) = (A000292(n) - (n mod 2) * (ceiling(n / 2)) ^ 2) / 2. - Luc Rousseau, Feb 25 2018
E.g.f.: (1/24)*( x*(36 + 15*x + 2*x^2)*cosh(x) + (12 + 21*x + 18*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019

A023857 a(n) = 1*(n+3-1) + 2*(n+3-2) + .... + k*(n+3-k), where k=floor((n+1)/2).

Original entry on oeis.org

3, 4, 13, 16, 34, 40, 70, 80, 125, 140, 203, 224, 308, 336, 444, 480, 615, 660, 825, 880, 1078, 1144, 1378, 1456, 1729, 1820, 2135, 2240, 2600, 2720, 3128, 3264, 3723, 3876, 4389, 4560, 5130, 5320, 5950, 6160, 6853, 7084, 7843, 8096, 8924, 9200, 10100, 10400, 11375, 11700
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..60], n-> (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48) # G. C. Greubel, Jun 12 2019
  • Magma
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jun 12 2019
    
  • Maple
    seq(sum(i*(n-i+3), i=1..ceil(n/2)), n=1..60); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Ceiling[n/2]*(Ceiling[n/2]+1)*(2*Ceiling[n/2]-3n-8)/6, {n,60}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{3,4,13,16,34,40,70},60] (* Harvey P. Dale, Feb 13 2018 *)
  • PARI
    a(n) = (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48; \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jun 12 2019
    

Formula

a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+3) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2) - 3*n - 8)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f. x*(3+x) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-1) + A058187(n-2). - R. J. Mathar, Sep 25 2013
a(n) = (4*n^3 + 27*n^2 + 50*n + 21 - 3*(n^2 + 6*n + 7)*(-1)^n)/48. - Luce ETIENNE, Nov 21 2014
E.g.f.: (x*(51 + 18*x + 2*x^2)*cosh(x) + (21 + 30*x + 21*x^2 + 2*x^3)*sinh(x))/24. - G. C. Greubel, Jun 12 2019

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019

A024854 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = (natural numbers), t = (natural numbers >= 3).

Original entry on oeis.org

4, 5, 16, 19, 40, 46, 80, 90, 140, 155, 224, 245, 336, 364, 480, 516, 660, 705, 880, 935, 1144, 1210, 1456, 1534, 1820, 1911, 2240, 2345, 2720, 2840, 3264, 3400, 3876, 4029, 4560, 4731, 5320, 5510, 6160, 6370, 7084, 7315, 8096, 8349, 9200, 9476, 10400, 10700, 11700
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48: n in [2..60]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    seq(sum(i*(k-i+3), i=1..floor(k/2)), k=2..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Floor[n/2] * (Floor[n/2] + 1) * (2 * Floor[n/2] - 3n - 8)/6, {n, 2, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    CoefficientList[Series[- (- 4 - x + x^2)/((1 + x)^3 (x - 1)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 31 2014 *)
  • SageMath
    [(4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48 for n in (2..60)] # G. C. Greubel, Jul 13 2022

Formula

a(n) = Sum_{i=1..floor(n/2)} i*(n-i+3) = -floor(n/2)*(floor(n/2)+1)*(2*floor(n/2)-3n-8)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f. x^2*(4 + x - x^2) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 4*A058187(n-2) + A058187(n-3) - A058187(n-4). - R. J. Mathar, Sep 25 2013
a(n) = (4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48. - Luce ETIENNE, Nov 14 2014
E.g.f.: (1/24)*( x*(9 + 18*x + 2*x^2)*cosh(x) + (-9 + 30*x + 15*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 13 2022

A024868 a(n) = 2*(n+1) + 3*n + ... + (k+1)*(n+2-k), where k = floor(n/2).

Original entry on oeis.org

6, 8, 22, 27, 52, 61, 100, 114, 170, 190, 266, 293, 392, 427, 552, 596, 750, 804, 990, 1055, 1276, 1353, 1612, 1702, 2002, 2106, 2450, 2569, 2960, 3095, 3536, 3688, 4182, 4352, 4902, 5091, 5700, 5909, 6580, 6810, 7546, 7798, 8602, 8877, 9752, 10051, 11000, 11324, 12350
Offset: 2

Views

Author

Keywords

Crossrefs

Apart from offset the same as A024306.

Programs

  • Magma
    [19*n/24-9/16+n^3/12+11*n^2/16+(-1)^n*(3*n/8 +9/16+n^2/16): n in [2..50]]; // Vincenzo Librandi, Sep 26 2013
    
  • Maple
    seq(sum((i+1)*(k-i+2), i=1..floor(k/2)), k=2..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[Floor[n/2] (-2Floor[n/2]^2 +3n*Floor[n/2] +9n +14)/6, {n, 2, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    CoefficientList[Series[(6 +2x -4x^2 -x^3 +x^4)/((1+x)^3 (1-x)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 26 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{6,8,22,27,52,61,100},50] (* Harvey P. Dale, Aug 11 2023 *)
  • SageMath
    [(1/48)*(4*n^3 +33*n^2 +38*n -27 +3*(-1)^n*(n+3)^2) for n in (2..60)] # G. C. Greubel, Jul 13 2022

Formula

a(n) = Sum_{i=1..floor(n/2)} (i+1)*(n-i+2) = floor(n/2)*(-2*floor(n/2)^2 + 3*n*floor(n/2) + 9*n + 14)/6, n>1. - Wesley Ivan Hurt, Sep 20 2013
G.f.: x^2*(6 + 2*x - 4*x^2 - x^3 + x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 6*A058187(n-2) +2*A058187(n-3) -4*A058187(n-4) -A058187(n-5) +A058187(n-6). - R. J. Mathar, Sep 25 2013
a(n) = ( 4*n^3 + 33*n^2 + 38*n - 27 )/48 + (-1)^n*(n+3)^2/16. - R. J. Mathar, Sep 25 2013
E.g.f.: (1/24)*( x*(2*x^2 + 24*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 48*x - 27)*sinh(x) ). - G. C. Greubel, Jul 13 2022
Showing 1-5 of 5 results.