cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024361 Number of primitive Pythagorean triangles with leg n.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 2, 2, 0, 1, 4, 1, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 2, 2, 1, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A or B takes value n.
For n > 1, a(n) = 0 for n == 2 (mod 4) (n in A016825).
From Jianing Song, Apr 23 2019: (Start)
Note that all the primitive Pythagorean triangles are given by A = min{2*u*v, u^2 - v^2}, B = max{2*u*v, u^2 - v^2}, C = u^2 + v^2, where u, v are coprime positive integers, u > v and u - v is odd. As a result:
(a) if n is odd, then a(n) is the number of representations of n to the form n = u^2 - v^2, where u, v are coprime positive integers (note that this guarantees that u - v is odd) and u > v. Let s = u + v, t = u - v, then n = s*t, where s and t are unitary divisors of n and s > t, so the number of representations is A034444(n)/2 if n > 1 and 0 if n = 1;
(b) if n is divisible by 4, then a(n) is the number of representations of n to the form n = 2*u*v, where u, v are coprime positive integers (note that this also guarantees that u - v is odd because n/2 is even) and u > v. So u and v must be unitary divisors of n/2, so the number of representations is A034444(n/2)/2. Since n is divisible by 4, A034444(n/2) = A034444(n) so a(n) = A034444(n)/2.
(c) if n == 2 (mod 4), then n/2 is odd, so n = 2*u*v implies that u and v are both odd, which is not acceptable, so a(n) = 0.
a(n) = 0 if n = 1 or n == 2 (mod 4), otherwise a(n) is a power of 2.
The earliest occurrence of 2^k is 2*A002110(k+1) for k > 0. (End)

Examples

			a(12) = 2 because 12 appears twice, in (A,B,C) = (5,12,13) and (12,35,37).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1 || Mod[n, 4] == 2, 0, 2^(Length[FactorInteger[n]] - 1)], {n, 100}]
  • PARI
    A024361(n) = if(1==n||(2==(n%4)),0,2^(omega(n)-1)); \\ (after the Mathematica program) - Antti Karttunen, Nov 10 2018

Formula

a(n) = A034444(n)/2 = 2^(A001221(n)-1) if n != 2 (mod 4) and n > 1, a(n) = 0 otherwise. - Jianing Song, Apr 23 2019
a(n) = A024359(n) + A024360(n). - Ray Chandler, Feb 03 2020

Extensions

Incorrect comment removed by Ant King, Jan 28 2011
More terms from Antti Karttunen, Nov 10 2018

A024359 Number of primitive Pythagorean triangles with short leg n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 1, 3, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 1, 3, 2, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A takes value n.
Number of times n occurs in A020884.
a(A139544(n)) = 0; a(A024352(n)) > 0. - Reinhard Zumkeller, Nov 09 2012

Crossrefs

Cf. A020884, A024352, A024360, A024361, A132404 (where records occur), A139544.

Programs

  • Haskell
    a024359_list = f 0 1 a020884_list where
       f c u vs'@(v:vs) | u == v = f (c + 1) u vs
                        | u /= v = c : f 0 (u + 1) vs'
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; Table[solns[n], {n, 100}]
    (* Second program: *)
    a[n_] := Module[{s = 0, b, c, d, g}, Do[g = Quotient[n^2, d]; If[d <= g && Mod[d+g, 2] == 0, c = Quotient[d+g, 2]; b = g-c; If[n < b && GCD[b, c] == 1, s++]], {d, Divisors[n^2]}]; s]; Array[a, 100] (* Jean-François Alcover, Apr 27 2019, from PARI *)
  • PARI
    nppt(a) = {
      my(s=0, b, c, d, g);
      fordiv(a^2, d,
        g=a^2\d;
        if(d<=g && (d+g)%2==0,
          c=(d+g)\2; b=g-c;
          if(aColin Barker, Oct 25 2015

Formula

a(n) = A024361(n) - A024360(n). - Ray Chandler, Feb 03 2020

A156684 The number of primitive Pythagorean triples A^2+B^2=C^2 with 0 < A < B < C and gcd(A,B)=1, and both legs less than n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16
Offset: 1

Author

Ant King, Feb 17 2009

Keywords

Comments

For large N, Benito and Varona have shown that a(N)~2/pi^2 Log(1+sqrt(2)).N +O(sqrt(N)). However, the approximations to a(N)/N are considerably more accurate than the error term suggests, and it certainly appears that the density of the primitive triples with both legs less than N tends towards 2/pi^2 Log(1+sqrt(2))=0.1786... as N becomes large.

Examples

			There are two primitive triples with both legs less than 14, specifically (3,4,5) and (5,12,13). Hence a(14)=2.
		

Crossrefs

Cf. Essentially partial sums of A024360.

Programs

  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[iA024360/b024360.txt", "Table"], {, }][[;; 10000, 2]]] // Accumulate (* Jean-François Alcover, Mar 27 2020 *)
Showing 1-3 of 3 results.