A024395 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 2 mod 3.
1, 7, 66, 806, 12164, 219108, 4591600, 109795600, 2951028000, 88084714400, 2891353030400, 103521905491200, 4015191638617600, 167714507921497600, 7506196028811110400, 358368551285791692800, 18180562447078051328000
Offset: 0
Examples
From _Gheorghe Coserea_, Dec 24 2015: (Start) For n=1 we have a(1) = 2*5*(1/2 + 1/5) = 7. For n=2 we have a(2) = 2*5*8*(1/2 + 1/5 + 1/8) = 66. For n=3 we have a(3) = 2*5*8*11*(1/2 + 1/5 + 1/8 + 1/11) = 806. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[ (-1)^(n+1)*Sum[(-3)^(n - k) k (-1)^(n - k) StirlingS1[n+1, k + 1], {k, 0, n}], {n, 1, 30}] Join[{1},Table[Module[{c=NestList[3+#&,2,n+1]},Times@@c*Total[1/c]],{n,0,20}]] (* Harvey P. Dale, Jul 09 2019 *)
-
PARI
n = 16; a = vector(n); a[1] = 7; a[2] = 66; for (k=2, n-1, a[k+1] = (6*k+7) * a[k] - (3*k+2)^2 * a[k-1]); print(concat(1,a)) \\ Gheorghe Coserea, Aug 30 2015
Formula
E.g.f. (for offset 1): -(1/3)*log(1-3*x)/(1-3*x)^(2/3). - Vladeta Jovovic, Sep 26 2003
For n >= 1, a(n-1) = 3^(n-1)*n!*sum(binomial(k-1/3,k)/(n-k), k = 0..n-1). - Milan Janjic, Dec 14 2008, corrected by Peter Bala, Oct 08 2013
a(n) ~ (n+1)! * 3^n * (log(n) + gamma - Pi*sqrt(3)/6 + 3*log(3)/2) / (n^(1/3)*GAMMA(2/3)), where "GAMMA" is the Gamma function and "gamma" is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 07 2013
a(n+1) = (6*n+7) * a(n) - (3*n+2)^2 * a(n-1). - Gheorghe Coserea, Aug 30 2015
a(n) = A225470(n+1, 1), n >= 0. - Wolfdieter Lang, May 29 2017
Extensions
Formula (see Mathematica line), correction and more terms from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 21 2001
Comments