cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024430 Expansion of e.g.f. cosh(exp(x)-1).

Original entry on oeis.org

1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707, 58194, 338195, 2097933, 13796952, 95504749, 692462671, 5245040408, 41436754261, 340899165549, 2915100624274, 25857170687507, 237448494222575, 2253720620740362, 22078799199129799, 222987346441156585, 2319210969809731600
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an even number of classes.
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives A sequence (cf. A024429).

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 5th line of table.
  • S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
  • L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15, 148.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) + BellB(n, -1))/2, n = 0..20); # G. C. Greubel, Oct 09 2019
  • Mathematica
    nn=20;a=Exp[Exp[x]-1];Range[0,nn]!CoefficientList[Series[(a+1/a)/2,{x,0,nn}],x]  (* Geoffrey Critzer, Nov 04 2012 *)
    Table[(BellB[n] + BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^(2*m)/prod(k=1, 2*m, 1-k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
    
  • Sage
    def A024430(n) :
        return add(stirling_number2(n,i) for i in range(0,n+(n+1)%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

a(n) = S(n, 2) + S(n, 4) + ... + S(n, 2k), where k = [ n/2 ], S(i, j) are Stirling numbers of second kind.
E.g.f.: cosh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) + A000587(n)) / 2. - Peter Luschny, Apr 25 2011
O.g.f.: Sum_{n>=0} x^(2*n) / Product_{k=0..2*n} (1 - k*x). - Paul D. Hanna, Sep 05 2012
G.f.: G(0)/(1+x) where G(k) = 1 - x*(2*k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - (2*k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Jun 14 2003 and again Sep 05 2006