cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024458 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers).

Original entry on oeis.org

1, 1, 3, 5, 12, 19, 40, 65, 130, 210, 404, 654, 1227, 1985, 3653, 5911, 10720, 17345, 31090, 50305, 89316, 144516, 254568, 411900, 720757, 1166209, 2029095, 3283145, 5684340, 9197455, 15855964, 25655489, 44061862, 71293590, 122032508
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
chat(n):=a(n+1), n>=0, is the half-convolution of the sequence A000045(n+1), n>=0, with itself. For the definition of half-convolution see a comment on A201204, where also the rule to find the o.g.f. is given. Here the o.g.f. is obtained from (U(x)^2 + U2(x^2))/2 with U(x)=1/(1-x-x^2), the o.g.f. of A000045(n+1), n>=0, and U2(x):=(1-x)/((1+x)*(1-3*x+x^2)) the o.g.f. of A007598(n+1), n>=0. This coincides with the o.g.f. given below in the formula section after x has been divided.
For the bisection of this half-convolution see A027991(n+1) and A001870(n), n>=0.
(End)

Crossrefs

Programs

  • Magma
    [(&+[Fibonacci(j+1)*Fibonacci(n-j): j in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 06 2022
    
  • Mathematica
    Table[((13-5(-1)^n +10n)Fibonacci[n] + (1-(-1)^n +2n)LucasL[n] +8Sin[Pi*n/2])/40, {n, 30}] (* Vladimir Reshetnikov, Oct 03 2016 *)
    LinearRecurrence[{1,3,-2,0,-2,-3,1,1},{1,1,3,5,12,19,40,65},40] (* Harvey P. Dale, Mar 02 2023 *)
  • SageMath
    def A024458(n): return sum(fibonacci(j+1)*fibonacci(n-j) for j in (0..((n-1)//2)) )
    [A024458(n) for n in (1..50)] # G. C. Greubel, Apr 06 2022

Formula

G.f.: x*(1-x^2+x^3)/((1+x^2)*(1+x-x^2)*(1-x-x^2)^2).
a(n) = ((13 - 5*(-1)^n + 10*n)*A000045(n) + (1 - (-1)^n + 2*n)*A000032(n) + 8*sin(Pi*n/2))/40. - Vladimir Reshetnikov, Oct 03 2016
From G. C. Greubel, Apr 06 2022: (Start)
a(2*n) = (1/5)*(n*Lucas(2*n+1) + Fibonacci(2*n)), n >= 1.
a(2*n+1) = (1/5)*((-1)^n + (n+1)*Lucas(2*n+2) + Fibonacci(2*n+1)), n >= 0.
a(n) = Sum_{j=0..floor((n-1)/2)} fibonacci(j+1)*Fibonacci(n-j). (End)

Extensions

More terms from James Sellers, May 03 2000