cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024622 Position of 2^n among the powers of primes (A000961).

Original entry on oeis.org

1, 2, 4, 7, 11, 19, 28, 45, 71, 118, 199, 341, 605, 1079, 1962, 3591, 6636, 12371, 23151, 43580, 82268, 155922, 296348, 564689, 1078556, 2064590, 3959000, 7605135, 14632961, 28195587, 54403836, 105102702, 203287170, 393625232, 762951923, 1480223717, 2874422304
Offset: 0

Views

Author

Keywords

Comments

Number of prime powers <= 2^n. - Jon E. Schoenfield, Nov 06 2016
A000961(a(n)) = A000079(n); also position of record values in A192015: A001787(n) = A192015(a(n)). - Reinhard Zumkeller, Jun 26 2011

Crossrefs

Programs

  • Mathematica
    {1}~Join~Flatten[1 + Position[Select[Range[10^6], PrimePowerQ], k_ /; IntegerQ@ Log2@ k ]] (* Michael De Vlieger, Nov 14 2016 *)
  • PARI
    lista(nn) = {v = vector(2^nn, i, i); vpp = select(x->ispp(x), v); print1(1, ", "); for (i=1, #vpp, if ((vpp[i] % 2) == 0, print1(i, ", ")););} \\ Michel Marcus, Nov 17 2014
    
  • PARI
    a(n)=sum(k=1,n,primepi(sqrtnint(2^n,k)))+1 \\ Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    a(n)=my(s=0);for(i=1, 2^n, isprimepower(i) && s++);s+1 \\ Dana Jacobsen, Mar 23 2021
    
  • Perl
    use ntheory ":all"; for my $n (0..20) { my $s=1; is_prime_power($) && $s++ for 1..2**$n; print "$n $s\n" } # _Dana Jacobsen, Mar 23 2021
    
  • Perl
    use ntheory ":all"; for my $n (0..64) { my $s = ($n < 1) ? 1 : vecsum(map{prime_count(rootint(powint(2,$n)-1,$))}1..$n)+2; print "$n $s\n"; } # _Dana Jacobsen, Mar 23 2021
    
  • Perl
    # with b-file for pi(2^n)
    perl -Mntheory=:all -nE 'my($n,$pc)=split; say "$n ", addint($pc,vecsum( map{prime_count(rootint(powint(2,$n),$))} 2..$n )+1);'  b007053.txt  # _Dana Jacobsen, Mar 23 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A024622(n):
        x = 1<Chai Wah Wu, Nov 05 2024
  • SageMath
    def a(n): return sum(prime_pi(ZZ(2^n).nth_root(k+1,truncate_mode=1)[0]) for k in range(n))+1 # Dana Jacobsen, Mar 23 2021
    

Formula

From Ridouane Oudra, Oct 26 2020: (Start)
a(n) = 1 + Sum_{i=1..n} pi(floor(2^(n/i))), where pi(n) = A000720(n);
a(n) = 1 + A182908(n). (End)
a(n) = A025528(2^n)+1. - Pontus von Brömssen, Sep 28 2024

Extensions

a(28)-a(36) from Hiroaki Yamanouchi, Nov 21 2014
a(46)-a(53) corrected by Hiroaki Yamanouchi, Nov 15 2016