A024622 Position of 2^n among the powers of primes (A000961).
1, 2, 4, 7, 11, 19, 28, 45, 71, 118, 199, 341, 605, 1079, 1962, 3591, 6636, 12371, 23151, 43580, 82268, 155922, 296348, 564689, 1078556, 2064590, 3959000, 7605135, 14632961, 28195587, 54403836, 105102702, 203287170, 393625232, 762951923, 1480223717, 2874422304
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..92 (using b-file from A007053, first 61 terms from Hiroaki Yamanouchi)
Programs
-
Mathematica
{1}~Join~Flatten[1 + Position[Select[Range[10^6], PrimePowerQ], k_ /; IntegerQ@ Log2@ k ]] (* Michael De Vlieger, Nov 14 2016 *)
-
PARI
lista(nn) = {v = vector(2^nn, i, i); vpp = select(x->ispp(x), v); print1(1, ", "); for (i=1, #vpp, if ((vpp[i] % 2) == 0, print1(i, ", ")););} \\ Michel Marcus, Nov 17 2014
-
PARI
a(n)=sum(k=1,n,primepi(sqrtnint(2^n,k)))+1 \\ Charles R Greathouse IV, Nov 21 2014
-
PARI
a(n)=my(s=0);for(i=1, 2^n, isprimepower(i) && s++);s+1 \\ Dana Jacobsen, Mar 23 2021
-
Perl
use ntheory ":all"; for my $n (0..20) { my $s=1; is_prime_power($) && $s++ for 1..2**$n; print "$n $s\n" } # _Dana Jacobsen, Mar 23 2021
-
Perl
use ntheory ":all"; for my $n (0..64) { my $s = ($n < 1) ? 1 : vecsum(map{prime_count(rootint(powint(2,$n)-1,$))}1..$n)+2; print "$n $s\n"; } # _Dana Jacobsen, Mar 23 2021
-
Perl
# with b-file for pi(2^n) perl -Mntheory=:all -nE 'my($n,$pc)=split; say "$n ", addint($pc,vecsum( map{prime_count(rootint(powint(2,$n),$))} 2..$n )+1);' b007053.txt # _Dana Jacobsen, Mar 23 2021
-
Python
from sympy import primepi, integer_nthroot def A024622(n): x = 1<
Chai Wah Wu, Nov 05 2024 -
SageMath
def a(n): return sum(prime_pi(ZZ(2^n).nth_root(k+1,truncate_mode=1)[0]) for k in range(n))+1 # Dana Jacobsen, Mar 23 2021
Formula
From Ridouane Oudra, Oct 26 2020: (Start)
a(n) = 1 + Sum_{i=1..n} pi(floor(2^(n/i))), where pi(n) = A000720(n);
a(n) = 1 + A182908(n). (End)
a(n) = A025528(2^n)+1. - Pontus von Brömssen, Sep 28 2024
Extensions
a(28)-a(36) from Hiroaki Yamanouchi, Nov 21 2014
a(46)-a(53) corrected by Hiroaki Yamanouchi, Nov 15 2016
Comments