cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024716 a(n) = Sum_{1 <= j <= i <= n} S(i,j), where S(i,j) are Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 8, 23, 75, 278, 1155, 5295, 26442, 142417, 820987, 5034584, 32679021, 223578343, 1606536888, 12086679035, 94951548839, 777028354998, 6609770560055, 58333928795427, 533203744952178, 5039919483399501, 49191925338483847, 495150794633289136
Offset: 1

Views

Author

Keywords

Comments

Row sums of triangle A137649. - Gary W. Adamson, Feb 01 2008
Number of nodes in the set partition tree T(n). See Butler and Sasao. - Michel Marcus, Nov 03 2020

Crossrefs

Equals A005001(n+1) - 1.
First column of triangle A101908.
Cf. A137649.

Programs

Formula

If offset is 0, a(n) = Sum_{i=0..n} binomial(n+1, i+1)*Bell(i) [cf. A000110].
Partial sums of Bell numbers. - Vladeta Jovovic, Mar 16 2003
From Sergei N. Gladkovskii, Dec 20 2012 and Jan 2013: (Start)
Recursively defined continued fractions:
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k + 1)/((2*k + 1)*(2*x*k + x - 1) - x*(2*k + 1)*(2*k + 3)*(2*x*k + x - 1)/(x*(2*k + 3) - 2*(k + 1)*(2*x*k + 2*x - 1)/G(k+1))).
G.f.: (G(0) - 1)/(1 - x) where G(k) = 1 + (1 - x)/(1 - x*(k + 1))/(1 - x/(x + (1 -x)/G(k+1))).
G.f.: (S - 1)/(1 - x), where S = (1/(1 - x)) * Sum_{k>=0} ((1 + (1 - x)/(1 - x -x*k))*x^k / Product_{i=1..k-1} (1 - x - x*i)).
G.f.: ((G(0) - 2)/(2*x - 1) - 1)/(1 - x)/x where G(k) = 2 - 1/(1 - k*x)/(1 - x/(x - 1/G(k+1))).
G.f.: 1/(G(0) - x)/(1 - x), where G(k) = 1 - x*(k + 1)/(1 - x/G(k+1)). (End)
a(n) ~ Bell(n) / (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = (1/e)*Sum_{k>=1} (k^n - 1)/((k - 1)*(k - 1)!). - Joseph Wheat, Jul 16 2024