A024810 a(n) = floor( tan(m*Pi/2) ), where m = 1 - 2^(-n).
1, 2, 5, 10, 20, 40, 81, 162, 325, 651, 1303, 2607, 5215, 10430, 20860, 41721, 83443, 166886, 333772, 667544, 1335088, 2670176, 5340353, 10680707, 21361414, 42722829, 85445659, 170891318, 341782637, 683565275, 1367130551, 2734261102, 5468522204, 10937044409
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sanjar M. Abrarov, Rajinder K. Jagpal, Rehan Siddiqui, and Brendan M. Quine, Algorithmic determination of a large integer in the two-term Machin-like formula for pi, arXiv:2107.01027 [math.GM], 2021.
- Hugo Pfoertner, Illustration of initial terms, sin(1/x) plotted on logarithmic x axis.
Programs
-
Mathematica
Table[Floor[Tan[(1 - 2^(-n)) Pi/2]], {n, 1, 40}] (* Vincenzo Librandi, Feb 26 2014 *)
-
PARI
a(n) = floor(tan((1 - 2^(-n))*Pi/2)) \\ Michel Marcus, Mar 23 2013
-
PARI
A024810(n)=2^(n+1)\Pi \\ M. F. Hasler, Oct 25 2019
Formula
a(n) = floor( 1 / tan( Pi / 2^(n+1) )). - Michael Somos, Feb 24 2014
a(n) = floor(2^(n+1)/Pi). - Clark Kimberling, Oct 10 2017 [Corrected by Michel Marcus, Oct 25 2019]
From Sanjar Abrarov, Jun 20 2024: (Start)
a(n) = floor(c_n/sqrt(2-c_{n-1})), where c_n=sqrt(2+c_{n-1}) and c_0 = 0.
a(n) = 2*a(n-1)+A127266(n). (End)
Extensions
a(30)-a(33) corrected by Michel Marcus, Mar 23 2013
Comments