A025147 Number of partitions of n into distinct parts >= 2.
1, 0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 17, 21, 25, 29, 35, 41, 48, 56, 66, 76, 89, 103, 119, 137, 159, 181, 209, 239, 273, 312, 356, 404, 460, 522, 591, 669, 757, 853, 963, 1085, 1219, 1371, 1539, 1725, 1933, 2164, 2418, 2702, 3016, 3362, 3746, 4171, 4637, 5155
Offset: 0
Examples
a(7) = 3, from {{3, 4}, {2, 5}, {7}} From _Joerg Arndt_, Jun 10 2013: (Start) There are a(17) = 21 partitions of 17 into distinct parts >=2: 01: [ 2 3 4 8 ] 02: [ 2 3 5 7 ] 03: [ 2 3 12 ] 04: [ 2 4 5 6 ] 05: [ 2 4 11 ] 06: [ 2 5 10 ] 07: [ 2 6 9 ] 08: [ 2 7 8 ] 09: [ 2 15 ] 10: [ 3 4 10 ] 11: [ 3 5 9 ] 12: [ 3 6 8 ] 13: [ 3 14 ] 14: [ 4 5 8 ] 15: [ 4 6 7 ] 16: [ 4 13 ] 17: [ 5 12 ] 18: [ 6 11 ] 19: [ 7 10 ] 20: [ 8 9 ] 21: [ 17 ] (End)
References
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 0..100 from Reinhard Zumkeller)
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- Rebekah Ann Gilbert, A Fine Rediscovery, 2014.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 798
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function q_1(n), see Corollary 3.7.
Programs
-
Haskell
a025147 = p 2 where p _ 0 = 1 p k m = if m < k then 0 else p (k + 1) (m - k) + p (k + 1) m -- Reinhard Zumkeller, Dec 28 2011
-
Maple
g:=product(1+x^j,j=2..65): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=0..57); # Emeric Deutsch, Apr 09 2006 with(combstruct):ZL := {L = PowerSet(Sequence(Z,card>=2)) },unlabeled:seq(count([L,ZL],size=i),i=0..57); # Zerinvary Lajos, Mar 09 2007
-
Mathematica
CoefficientList[Series[Product[1+q^n, {n, 2, 60}], {q, 0, 60}], q] FoldList[ PartitionsQ[ #2+1 ]-#1&, 0, Range[ 64 ] ] (* also *) d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 2 &]; Table[d[n], {n, 12}] (* strict partitions, parts >= 2 *) Table[Length[d[n]], {n, 40}] (* A025147 for n >= 1 *) (* Clark Kimberling, Mar 07 2014 *) p[, 0] = 1; p[k, m_] := p[k, m] = If[m < k, 0, p[k+1, m-k] + p[k+1, m]]; Table[p[2, m], {m, 0, 59}] (* Jean-François Alcover, Apr 17 2014, after Reinhard Zumkeller *)
-
PARI
a(n)=if(n,my(v=partitions(n));sum(i=1,#v,v[i][1]>1&&v[i]==vecsort(v[i],,8)),1) \\ Charles R Greathouse IV, Nov 20 2012
Formula
G.f.: Product_{k>=2} (1+x^k).
a(n)=t(n, 1), where t(n, k)=1+Sum_{i>j>k and i+j=n} t(i, j), 2<=k<=n. - Reinhard Zumkeller, Jan 01 2003
G.f.: 1 + Sum_{k=1..infinity} (x^(k*(k+3)/2) / Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Apr 09 2006
The previous g.f. is a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=0} ( x^(n*(n+2*L-1)/2) / Product_{k=1..n} (1-x^k) ). - Joerg Arndt, Mar 24 2011
G.f.: Sum_{n>=1} ( x^(n*(n+1)/2-1) / Product_{k=1..n-1} (1-x^k) ), a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=L-1} ( x^(n*(n+1)/2-L*(L-1)/2) / Product_{k=1..n-(L-1)} (1-x^k) ). - Joerg Arndt, Mar 27 2011
a(n) = Sum_{1A060016(n-k+1,k-1), for n>0. - Reinhard Zumkeller, Nov 04 2007
a(n) = A096765(n+1). - R. J. Mathar, Jul 31 2008
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ 1/2 * A000009(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)).
(End)
Extensions
Corrected and extended by Dean Hickerson, Oct 10 2001
Comments