A025178 First differences of the central trinomial coefficients A002426.
0, 2, 4, 12, 32, 90, 252, 714, 2032, 5814, 16700, 48136, 139152, 403286, 1171380, 3409020, 9938304, 29017878, 84844044, 248382516, 727971360, 2135784798, 6272092596, 18435108258, 54228499920, 159636389850, 470256930052, 1386170197704
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a := n -> 2*(n-1)*hypergeom([1-n/2, 3/2-n/2], [2], 4): seq(simplify(a(n)), n=1..28); # Peter Luschny, Oct 29 2015
-
Mathematica
Rest[Differences[CoefficientList[Series[x/Sqrt[1-2x-3x^2],{x,0,30}],x]]] (* Harvey P. Dale, Aug 22 2011 *) Differences[Table[Hypergeometric2F1[(1-n)/2,1-n/2,1,4],{n,1,29}]] (* Peter Luschny, Nov 03 2015 *)
-
PARI
a(n) = sum(k=1, n\2, binomial(n-1,2*k-1)*binomial(2*k,k)); \\ Altug Alkan, Oct 29 2015
-
Sage
def a(): b, c, n = 0, 2, 2 yield b while True: yield c b, c = c, ((2*n-1)*c+3*(n-1)*b)*n//((n+1)*(n-1)) n += 1 A025178 = a() print([next(A025178) for in (1..20)]) # _Peter Luschny, Nov 04 2015
Formula
a(n) = T(n,n) for n>=1, where T is the array defined in A025177.
a(n) is asymptotic to c*3^n/sqrt(n) with c around 1.02... - Benoit Cloitre, Nov 02 2002
a(n) = 2*(n-1)*A001006(n-2). - M. F. Hasler, Oct 24 2011
a(n) = 2*A005717(n-1). - R. J. Mathar, Jul 09 2012
E.g.f. Integral(Integral(2*exp(x)*((1-1/x)*BesselI(1,2*x) + 2*BesselI(0,2*x)))). - Sergei N. Gladkovskii, Aug 16 2012
G.f.: -1/x + (1/x-1)/sqrt(1-2*x-3*x^2). - Sergei N. Gladkovskii, Aug 16 2012
D-finite with recurrence: a(n) = ((2+n)*a(n-2)+3*(3-n)*a(n-3)+3*(n-1)*a(n-1))/n, a(0)=1, a(1)=0, a(2)=2. - Sergei N. Gladkovskii, Aug 16 2012 [adapted to new offset by Peter Luschny, Nov 04 2015]
G.f.: (1-x)/x^2*G(0) - 1/x^2 , where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013
From Peter Bala, Oct 28 2015: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(n-1,2*k-1)*binomial(2*k,k). Cf. A097893.
n*(n-2)*a(n) = (2*n-3)*(n-1)*a(n-1) + 3*(n-1)*(n-2)*a(n-2) with a(1) = 0, a(2) = 2. (End)
From Peter Luschny, Oct 29 2015: (Start)
a(n) = 2*(n-1)*hypergeom([1-n/2,3/2-n/2],[2],4).
a(n) = (n-1)!*[x^(n-1)](2*exp(x)*BesselI(1,2*x)).
a(n) = (n-1)*A007971(n) for n>=2.
A105696(n) = a(n-1) + a(n) for n>=2.
A162551(n-2) = (1/2)*Sum_{k=1..n} binomial(n,k)*a(k) for n>=2.
A079309(n) = (1/2)*Sum_{k=1..2*n} (-1)^k*binomial(2*n,k)*a(k) for n>=1.
(End)
Extensions
New name based on a comment by T. D. Noe, Mar 16 2005, offset set to 1 and a(1) = 0 prepended by Peter Luschny, Nov 04 2015
Comments