cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025265 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.

Original entry on oeis.org

1, 0, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350, 1764044315540
Offset: 1

Views

Author

Keywords

Comments

With offset 0, a(n) is the number of 021-avoiding ascent sequences of length n with no isolated 0's. For example, a(4)=4 counts 0000, 0001, 0011, 0012. - David Callan, Nov 13 2019

Crossrefs

Programs

  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 0; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n-k]],{k,1,n-1}],{n,4,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    CoefficientList[Series[(1-Sqrt[1-4x+4x^2-4x^3])/2,{x,0,40}],x] (* Harvey P. Dale, Jun 02 2017 *)
  • Maxima
    a(n):=sum((binomial(2*k,k)*(sum(binomial(j,n-k-j-1)*binomial(k+1,j),j,0,k+1))*(-1)^(-n+k+1))/(k+1),k,0,n); /* Vladimir Kruchinin, May 10 2018  */
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x+4*x^2-4*x^3+x*O(x^n)))/2,n)
    
  • PARI
    a(n)=if(n<1,0,polcoeff(subst(serreverse(x-x^2+x*O(x^n)),x,x-x^2+x^3),n))
    

Formula

a(n+2) = A091561(n).
G.f.: (1-sqrt(1-4*x+4*x^2-4*x^3))/2. - Michael Somos, Jun 08 2000
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=(x-x^2+x^3)-(y-y^2). - Michael Somos, May 26 2005
D-finite with recurrence n*a(n) +2*(3-2*n)*a(n-1) +4*(n-3)*a(n-2)+ 2*(9-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
a(n) = Sum_{k=0..n} C(k)*Sum_{j=0..k+1} binomial(j,n-k-j-1)*binomial(k+1,j)*(-1)^(-n+k-1), where C(k) is Catalan numbers (A000108) - Vladimir Kruchinin, May 10 2018