cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A024796 Numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k.

Original entry on oeis.org

27, 33, 38, 41, 51, 54, 57, 59, 62, 66, 69, 74, 75, 77, 81, 83, 86, 89, 90, 94, 98, 99, 101, 102, 105, 107, 108, 110, 113, 114, 117, 118, 121, 122, 123, 125, 126, 129, 131, 132, 134, 137, 138, 139, 141, 146, 147, 149, 150, 152, 153, 154, 155, 158, 161, 162, 164, 165, 166, 170
Offset: 1

Views

Author

Keywords

Comments

a(n) multiplied by (h^2)/(8*m*a^2) is the n-th energy level exhibiting accidental degeneracy, for a quantum mechanical particle of mass m in a cubic box of side length a (h is Planck's constant). - A. Timothy Royappa, Feb 12 2019

Crossrefs

Programs

  • Mathematica
    okQ[n_]:= Length[Select[PowersRepresentations[n, 3, 2], !MemberQ[#, 0] &]] > 1; (* Jinyuan Wang, Feb 12 2019 *)
  • PARI
    is(n)=if(n<27, return(0)); if(n%4==0, return(is(n/4))); my(w); for(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); for(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), if(issquare(t-j^2), w++>1 && return(1)))); 0 \\ Charles R Greathouse IV, Aug 05 2024

Formula

{n: A025427(n) > 1 }. - R. J. Mathar, Aug 05 2022

A309763 Numbers that are the sum of 4 nonzero 4th powers in more than one way.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16578, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Examples

			259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4, so 259 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    V:= Vector(N, datatype=integer[4]):
    for a from 1 while a^4 <= N do
      for b from 1 to a while a^4+b^4 <= N do
        for c from 1 to b while a^4 + b^4+ c^4 <= N do
          for d from 1 to c do
             v:= a^4+b^4+c^4+d^4;
             if v > N then break fi;
             V[v]:= V[v]+1
    od od od od:
    select(i -> V[i]>1, [$1..N]); # Robert Israel, Oct 07 2019
  • Mathematica
    Select[Range@20000, Length@Select[PowersRepresentations[#, 4, 4], ! MemberQ[#, 0] &] > 1 &]

A025406 Numbers that are the sum of 4 positive cubes in 2 or more ways.

Original entry on oeis.org

219, 252, 259, 278, 315, 376, 467, 522, 594, 702, 758, 763, 765, 802, 809, 819, 856, 864, 945, 980, 1010, 1017, 1036, 1043, 1073, 1078, 1081, 1118, 1134, 1160, 1225, 1251, 1352, 1367, 1368, 1374, 1375, 1393, 1397, 1423, 1430, 1458, 1460, 1465, 1467, 1484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 2000: # for terms <= N
    S2:= {}: S1:= {}:
    for x from 1 while x^3 < N do
    for y from 1 to x while x^3 + y^3 < N do
      for z from 1 to y while x^3 + y^3 + z^3 < N do
        for w from 1 to z do
        v:= x^3 + y^3 + z^3 + w^3;
        if v > N then break fi;
        if member(v,S1) then S2:= S2 union {v}
        else S1:= S1 union {v}
        fi
    od od od od:
    sort(convert(S2,list)); # Robert Israel, Feb 24 2021

Formula

{n: A025457(n) >= 2}. - R. J. Mathar, Jun 15 2018

A025368 Numbers that are the sum of 4 nonzero squares in 3 or more ways.

Original entry on oeis.org

28, 42, 52, 55, 58, 60, 63, 66, 67, 70, 73, 75, 76, 78, 79, 82, 84, 85, 87, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 132, 133, 134, 135, 137, 138, 139, 140, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >=3}. Union of A025369 and A025359.- R. J. Mathar, Jun 15 2018

A344795 Numbers that are the sum of five squares in two or more ways.

Original entry on oeis.org

20, 29, 32, 35, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Sean A. Irvine, May 28 2021

Keywords

Crossrefs

A025358 Numbers that are the sum of 4 nonzero squares in exactly 2 ways.

Original entry on oeis.org

31, 34, 36, 37, 39, 43, 45, 47, 49, 50, 54, 57, 61, 68, 69, 71, 74, 77, 81, 83, 86, 94, 107, 113, 116, 131, 136, 144, 149, 200, 216, 272, 296, 344, 376, 464, 544, 576, 800, 864, 1088, 1184, 1376, 1504, 1856, 2176, 2304, 3200, 3456, 4352, 4736, 5504, 6016, 7424
Offset: 1

Views

Author

Keywords

Comments

Conjecture: the even members of this sequence are all numbers of the form
k*4^m for k in [9,17,29], m>= 1, or k*4^m for k in [34, 50, 54, 74, 86, 94], m>=0. - Robert Israel, Nov 03 2017

Crossrefs

Cf. A025367 (at least 2 ways).

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    T:= Vector(N):
    for a from 1 to floor(sqrt(N/4)) do
        for b from a to floor(sqrt((N-a^2)/3)) do
          for c from b to floor(sqrt((N-a^2-b^2)/2)) do
            for d from c to floor(sqrt(N-a^2-b^2-c^2)) do
              m:= a^2+b^2+c^2+d^2;
              T[m]:= T[m]+1;
    od od od od:
    select(i -> T[i] = 2, [$1..N]); # Robert Israel, Nov 03 2017
  • Mathematica
    M = 1000;
    Clear[T]; T[_] = 0;
    For[a = 1, a <= Floor[Sqrt[M/4]], a++,
      For[b = a, b <= Floor[Sqrt[(M - a^2)/3]], b++,
        For[c = b, c <= Floor[Sqrt[(M - a^2 - b^2)/2]], c++,
          For[d = c, d <= Floor[Sqrt[M - a^2 - b^2 - c^2]], d++,
            m = a^2 + b^2 + c^2 + d^2;
            T[m] = T[m] + 1;
    ]]]];
    Select[Range[M], T[#] == 2&] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)

Formula

{n: A025428(n) = 2}. - R. J. Mathar, Jun 15 2018

A047698 Numbers that are the sum of four positive seventh powers in two or more ways.

Original entry on oeis.org

2056364173794800, 12191487610289536, 263214614245734400, 696885239160606459, 1560510414117060608, 4497268448089227600, 18896044524917750533, 25704745581139341318, 26662783403703215232, 33691470623454003200, 44053472466326057527, 100502405478837434259
Offset: 1

Views

Author

Keywords

Examples

			4497268448089227600 = 30^7 + 42^7 + 369^7 + 447^7 = 45^7 + 270^7 + 387^7 + 438^7. - _Sean A. Irvine_, May 15 2021
		

Crossrefs

Extensions

Corrected by D. J. Bernstein (djb(AT)cr.yp.to)
a(6)-a(12) from Sean A. Irvine, May 14 2021
Showing 1-7 of 7 results.