cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025453 Number of partitions of n into 9 nonnegative cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 3
Offset: 0

Views

Author

Keywords

Examples

			a(8) = 2 via 8*0^3 + 1*2^3 = 1 * 0^3 + 8*1^3.
		

Crossrefs

Programs

  • Maple
    f:= proc(x,m,M)
    local i;
    option remember;
      if x = 0 then return 1
      elif m = 0 then return 0
      fi;
      add(procname(x-i^3, m-1, i), i=1..min(M,floor(x^(1/3))));
    end proc:
    map(f, [$0..150],9,150); # Robert Israel, Jan 23 2025
  • PARI
    first(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0David A. Corneth, Jan 23 2025

A001239 Numbers that are the sum of 3 nonnegative cubes in more than 1 way.

Original entry on oeis.org

216, 251, 344, 729, 855, 1009, 1072, 1366, 1457, 1459, 1520, 1674, 1728, 1729, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 2752, 3060, 3391, 3402, 3457, 3500, 3592, 3599, 3655, 3744, 3745
Offset: 1

Keywords

References

  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 165.

Programs

  • Mathematica
    Select[Range[4000], Length[PowersRepresentations[#, 3, 3]] > 1 &] (* Harvey P. Dale, Feb 03 2011 *)
  • PARI
    is(n)=my(t); for(a=0, sqrtnint(n, 3), my(a3=a^3, c); for(b=0, min(a, sqrtnint(n-a3, 3)), if(ispower(n-a3-b^3, 3, &c) && c <= b && t++>1, return(1)))); 0 \\ Charles R Greathouse IV, Jul 02 2017

A337366 Number of representations of A036691(n) as a sum of 3 nonnegative cubes.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 1, 2, 1, 4, 6, 3, 8, 8, 14, 7
Offset: 0

Author

Altug Alkan, Aug 25 2020

Keywords

Comments

Conjecture I: a(n) = 0 only for n = 1. That is, any product of first n > 1 composite numbers is a sum of at most 3 positive cubes. For example,
A036691(100) = 2563573191821442299652988946477367093137353211904000000000^3 + 21431289850849406740917647451954098598503667204096000000000^3 + 26409890400237152457638095665189553529771293409280000000000^3.
Conjecture II: For any term t >= 1, there are only finitely many values of n such that a(n) = t.

Examples

			a(4) = 2 because A036691(4) = 1728 = 12^3 = 6^3 + 8^3 + 10^3.
		

Crossrefs

Programs

  • Mathematica
    A036691 = Join[{1}, FoldList[Times, Select[Range[20], CompositeQ]]];
    Table[Length@ PowersRepresentations[A036691[[n]], 3, 3], {n, 10}] (* Robert Price, Sep 08 2020 *)

Formula

a(n) = A025447(A036691(n)).
Showing 1-3 of 3 results.