A025527 a(n) = n!/lcm{1,2,...,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), ..., C(n-1,n-1)}.
1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 522547200, 522547200, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000
Offset: 1
Keywords
Examples
a(5) = 2 as 5!/lcm(1..5) = 120/60 = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- Liam Solus, Simplices for Numeral Systems, arXiv:1706.00480 [math.CO], 2017. Mentions this sequence.
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
GAP
List([1..30],n->Factorial(n)/Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
-
Maple
seq(n!/lcm($1..n), n=1..30); A025527 := proc(n) option remember; `if`(n < 3, 1, ilcm(op(numtheory[divisors](n) minus{1,n}))*A025527(n-1)) end: seq(A025527(i),i=1..26); # Peter Luschny, Mar 23 2011
-
Mathematica
Table[n!/Apply[LCM,Range[n]],{n,1,26}] (* Geoffrey Critzer, Jun 17 2013 *)
-
PARI
a(n)=n!/lcm([2..n]) \\ Charles R Greathouse IV, Mar 06 2014
-
Sage
def A025527(n) : if n < 2 : return 1 else : D = divisors(n); D.pop() return lcm(D)*A025527(n-1) [A025527(i) for i in (1..26)] # Peter Luschny, Feb 03 2012
Formula
log a(n) = n log n - 2n + O(n/log^4 n). (The error term can be improved. On the Riemann Hypothesis it is O(n^k) for any k > 1/2.) - Charles R Greathouse IV, Oct 16 2012
a(n) = A205957(n), 1 <= n <= 11. - Daniel Forgues, Apr 22 2014
Comments