cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025528 Number of prime powers <= n with exponents > 0 (A246655).

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 28, 29, 29, 30, 30
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of the exponents in the prime factorization of lcm{1,2,...,n}.
Larger than but analogous to Pi(n).
Counts A000961 without 1=prime^0: a(n)=A065515(n)-1. - Reinhard Zumkeller, Jul 03 2003
Equally, number of finite fields of order <= n. - Neven Juric, Feb 05 2010

Examples

			Below 100 there are 25 primes and 25 + 10 = 35 prime powers.
		

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Cf. A000961, A000040, A000720, A001221, A003418, A141228, A246655, A276781 (ordinal transform).
One less than A065515.

Programs

  • Mathematica
    primePowerPi[n_] := Sum[PrimePi[n^(1/k)], {k, Log[2, n]}]; Table[primePowerPi[n], {n, 75}] (* Geoffrey Critzer, Jan 07 2012 *) (* and modified by Robert G. Wilson v, Jan 07 2012 *)
    Table[Sum[Boole[1 < Cyclotomic[n, 1]], {n, 1, m}], {m, 1, 75}] (* Fred Daniel Kline, Oct 03 2016 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,logint(n,prime(k))),",")) \\ corrected by Luc Rousseau, Jan 04 2018
    
  • PARI
    a(n)=sum(i=1,n,if(omega(i)-1,0,1))
    
  • PARI
    a(n)=n+=.5;sum(e=1,log(n)\log(2),primepi(n^(1/e))) \\ Charles R Greathouse IV, Apr 30 2012
    
  • Python
    from sympy import primepi, integer_nthroot
    def A025528(n): return sum(primepi(integer_nthroot(n,k)[0]) for k in range(1,n.bit_length())) # Chai Wah Wu, Aug 15 2024
  • SageMath
    def A025528(n) : return sum([1 for k in (0..n) if is_prime_power(k)])
    print([A025528(n)  for n in (1..74)]) # Peter Luschny, Nov 18 2019
    

Formula

a(n) = Cardinality[{1..n}|A001221(i)=1].
a(n) = Sum_{p prime <= n} floor(log(n)/log(p)). - Benoit Cloitre, Apr 30 2002
a(n) ~ n/log(n). - Benoit Cloitre, May 30 2003
a(n) = A069637(n) + A000720(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 24 2004 [Corrected by Franklin T. Adams-Watters, Jun 08 2008]
a(n) = A000720(n) + A000720(floor(n^(1/2))) + A000720(floor(n^(1/3))) + ... - Max Alekseyev, May 11 2009
Partial sums of A069513. - Enrique Pérez Herrero, May 30 2011
a(n) = A001222(A003418(n)). - Luc Rousseau, Jan 05 2018
From Steven Foster Clark, Sep 26 2018: (Start)
a(n) = Sum_{m=1..n} A001222(m) * A002321(floor(n/m)) where A001222() is the Omega function and A002321() is the Mertens function.
a(n) = Sum_{m=1..floor(log_2(n))} A000010(m)/m * J(floor(n^(1/m))) where A000010() is Euler's totient function and J(n) = Sum_{m=1..floor(log_2(n))} 1/m * A000720(floor(n^(1/m))) is Riemann's prime-power counting function.
(End)

Extensions

New description from Labos Elemer, Nov 09 2000