A025547 Least common multiple of {1,3,5,...,2n-1}.
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Eric Weisstein's World of Mathematics, Jeep Problem, Pi, Pi Continued Fraction, Least Common Multiple
- Wikipedia, Least common multiple
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
Haskell
a025547 n = a025547_list !! (n-1) a025547_list = scanl1 lcm a005408_list -- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
-
Maple
A025547:=proc(n) local i,t1; t1:=1; for i from 1 to n do t1:=lcm(t1,2*i-1); od: t1; end; f := n->denom(add(1/(2*k-1),k=0..n)); # a different sequence!
-
Mathematica
a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *) nn=30;With[{c=Range[1,2*nn,2]},Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Jan 27 2013 *)
-
PARI
a(n)=lcm(vector(n,k,2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
-
Python
# generates initial segment of sequence from math import gcd from itertools import accumulate def lcm(a, b): return a * b // gcd(a, b) def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm)) print(aupton(23)) # Michael S. Branicky, Mar 28 2022
Comments