cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025558 a(n) = (n/(n+1)) * lcm(1,2,...,n+1).

Original entry on oeis.org

1, 4, 9, 48, 50, 360, 735, 2240, 2268, 25200, 25410, 332640, 334620, 336336, 675675, 11531520, 11571560, 220540320, 221152932, 221707200, 222211080, 5121436320, 5131136010, 25700298624, 25741485000, 77338861600, 77445096300, 2248776129600, 2251453244040
Offset: 1

Views

Author

Keywords

Comments

a(n) = (1/1 + 1/3 + 1/6 + ... + 1/C(n+1,2))*lcm(1,3,6,...,binomial(n+1,2)) = 2n/(n+1) * lcm(1,3,6,...,binomial(n+1,2)).
a(n+1) = a(n) * ((n+1)^2)/(n * ((n+2)/p) ), where p = n+2 if n+2 is prime, p = q if n+2 = q^k (q is prime, k>1), or p = 1 if n+2 is not a prime or a prime power. - Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Jan 08 2004

Crossrefs

Programs

  • Maple
    a:= n-> (n/(n+1)) * ilcm($1..n+1):
    seq(a(n), n=1..29);  # Alois P. Heinz, Mar 07 2022
  • Mathematica
    Table[n/(n+1) LCM@@Range[n+1],{n,30}]  (* Harvey P. Dale, Apr 02 2011 *)
  • PARI
    a(n) = n*lcm([1..n+1])/(n+1); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = n * A002944(n+1) = (n/(n+1)) * A003418(n+1).

Extensions

Entry revised by N. J. A. Sloane, Nov 12 2004