A099946
a(n) = lcm{1, 2, ..., n}/(n*(n-1)), n >= 2.
Original entry on oeis.org
1, 1, 1, 3, 2, 10, 15, 35, 28, 252, 210, 2310, 1980, 1716, 3003, 45045, 40040, 680680, 612612, 554268, 503880, 10581480, 9699690, 44618574, 41186376, 114406600, 106234700, 2868336900, 2677114440, 77636318760, 145568097675, 136745788725
Offset: 2
-
a:= n-> ilcm(seq(k,k=1..n))/n/(n-1): seq(a(n), n=2..37); # Emeric Deutsch, Jun 13 2005
-
Table[LCM@@Range[n]/(n(n-1)), {n,2,40}] (* Harvey P. Dale, Jan 14 2011 *)
-
a(n) = lcm(vector(n, i, i))/(n*(n-1)); \\ Michel Marcus, Jul 25 2014
-
from math import gcd
def lcm(a, b):
return (a * b) // gcd(a, b)
def f(lim):
l = 1
for n in range(2, lim + 1):
l = lcm(n, l)
print(n, l // (n * (n - 1)))
f(100) # Luke March, Jul 23 2014
A091342
Given (1) f(h,j,a) = ( [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (h(j+1)) ] - [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (ja) ] ) / a then let (2) a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ).
Original entry on oeis.org
1, 3, 10, 105, 252, 2310, 25740, 45045, 680680, 11639628, 10581480, 223092870, 1029659400, 2868336900, 77636318760, 4512611027925, 4247163320400, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1
Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Mar 01 2004
a(5) = lcm(9,4,7,3) = 252
a(7) = lcm(13,6,11,5,9,4,1) = 25740
a(10)= lcm(19,9,17,4,3,7,13,3,11,1) = 11639628
a(14)= lcm(27,13,25,6,23,11,3,5,19,9,17,4,15,1) = 2868336900
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(2) = Denominator[(1 - 1/2 - 1/2 + 1/3)] = Denominator[1/3] = 3.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
Denominator[Table[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,40}]] (* Alexander Adamchuk, Apr 11 2006 *)
A097382
a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ), when j=2.
Original entry on oeis.org
1, 4, 35, 20, 3003, 560, 692835, 4620, 185910725, 48048, 136745788725, 1361360, 4281195077775, 22170720, 6541380665835015, 446185740, 1898924328582105825, 5949143200, 90048990529077755175
Offset: 1
Scott C Macfarlan (scottmacfarlan(AT)covance.com), Sep 18 2004
a(2) = 4 = lcm(4,1)
a(5) = 3003 = lcm(13,11,3,7,1)
a(6) = 560 = lcm(16,7,4,5,8,1)
a(13) = 4281195077775 = lcm(37,35,11,31,29,9,25,23,7,19,17,5,1)
A098135
a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ), when j=3.
Original entry on oeis.org
1, 5, 9, 455, 2618, 315, 271700, 56751695, 6930, 3708514810, 32152414840, 135135, 19749267715100, 314645828225300, 34918884, 113543477411038675, 473930651619825400, 669278610, 467655703593591713200
Offset: 0
Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Sep 27 2004
a(2) = 5 = lcm(5,1)
a(3) = 9 = lcm(9,3,1)
a(5) = 2618 = lcm(17,7,11,2,1)
a(11) = 32152414840 = (41,19,35,8,29,13,23,5,17,7,1)
A379561
a(n) = A003418(n+1)*H(n), where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number.
Original entry on oeis.org
2, 9, 22, 125, 137, 1029, 2178, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 813635157, 825887397, 837527025, 848612385, 19761458895, 19994251455, 101086721625, 102157567401, 309561680403, 312536252003, 9146733078187
Offset: 1
a(n)/A025558(n) = [ 2/1, 9/4, 22/9, 125/48, 137/50, 1029/360, 2178/735, ... ]
To evaluate the integral:
For n = 1: Integral_{x=0..1} Li_1(x^(1/2))/x^(1/2) dx = Integral_{x=0..1} -log(1-x^(1/2))/x^(1/2) dx = -2 * -(Sum_{x=1..oo} 1/(x*(x+1))) = -2 * -1 = 2.
For n = 2: Integral_{x=0..1} Li_1(x^(1/3))/x^(1/3) dx = Integral_{x=0..1} -log(1-x^(1/3))/x^(1/3) dx = -3 * -(Sum_{x=1..oo} 1/(x*(x+2))) = -3 * -((1/2)*(1+1/2)) = -3 * -3/4 = 9/4.
For n = 3: Integral_{x=0..1} Li_1(x^(1/4))/x^(1/4) dx = Integral_{x=0..1} -log(1-x^(1/4))/x^(1/4) dx = -4 * -(Sum_{x=1..oo} 1/(x*(x+3))) = -4 * -((1/3)*(1+1/2+1/3)) = -4 * -11/18 = 22/9.
Cf.
A193758 (very similar sequence).
-
a(n) = lcm(vector(n+1, i, i))*sum(i=1, n, 1/i); \\ Michel Marcus, Dec 28 2024
Showing 1-5 of 5 results.
Comments