A363154
Triangle read by rows. The Hadamard product of A173018 and A349203.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 3, 4, 1, 0, 12, 33, 22, 3, 0, 10, 52, 66, 26, 2, 0, 60, 570, 1208, 906, 228, 10, 0, 105, 1800, 5955, 7248, 3573, 600, 15, 0, 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0, 252, 14056, 102256, 264702, 312380, 176468, 43824, 3514, 28, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 2, 1, 0;
[3] 3, 4, 1, 0;
[4] 12, 33, 22, 3, 0;
[5] 10, 52, 66, 26, 2, 0;
[6] 60, 570, 1208, 906, 228, 10, 0;
[7] 105, 1800, 5955, 7248, 3573, 600, 15, 0;
[8] 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0;
-
A173018 := (n, k) -> combinat[eulerian1](n, k):
A349203 := (n, k) -> ilcm(seq(binomial(n, j), j = 0..n)) / binomial(n, k):
A363154 := (n, k) -> A173018(n, k) * A349203(n, k):
for n from 0 to 8 do seq(A363154(n, k), k = 0..n) od;
A355947
a(n) = Sum_{k=1..n} (n+1-k)*floor(n/k).
Original entry on oeis.org
0, 1, 5, 12, 25, 39, 65, 87, 124, 161, 210, 249, 328, 377, 450, 531, 630, 698, 825, 903, 1047, 1169, 1295, 1393, 1609, 1740, 1893, 2056, 2269, 2400, 2679, 2822, 3070, 3277, 3486, 3709, 4082, 4260, 4498, 4748, 5136, 5336, 5744, 5956, 6312, 6686, 6984, 7218, 7772
Offset: 0
For n=5, the sum is formed:
k = 1..n: 1 2 3 4 5
floor(n/k): 5 2 1 1 1
n+1-k = n..1: 5 4 3 2 1
floor(n/k)*(n+1-k): 25 8 3 2 1
__________________
a(5) = 25 + 8 + 3 + 2 + 1 = 39
-
a[n_] := Sum[(n+1-k) * Floor[n/k], {k, 1, n}]; Array[a, 50, 0] (* Amiram Eldar, Jul 22 2022 *)
-
a(n) = sum(k=1, n, (n+1-k)*floor(n/k)) \\ Rémy Sigrist, Jul 21 2022
-
my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k*(k-(k-1)*x-x^k)/(1-x^k)^2)/(1-x)^2)) \\ Seiichi Manyama, Jul 24 2022
-
from math import isqrt
def A355947(n): return (s:=isqrt(n))**2*(s-(n<<1)-1)+sum((q:=n//k)*((n<<2)-(k<<1)-q+3) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023
A119936
Least common multiple (LCM) of denominators of the rows of the triangle of rationals A119935/A119932.
Original entry on oeis.org
1, 8, 108, 576, 18000, 21600, 1234800, 5644800, 57153600, 63504000, 8452382400, 9220780800, 1688171284800, 1818030614400, 1947889944000, 8310997094400, 2551995545299200, 2702112930316800, 1029655143835718400
Offset: 1
Showing 1-3 of 3 results.
Comments