cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A025715 Index of 6^n in A025622 (numbers of form 5^i*6^j).

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 201, 223, 246, 270, 295, 321, 348, 376, 405, 436, 468, 501, 535, 570, 606, 643, 681, 720, 761, 803, 846, 890, 935, 981, 1028, 1076, 1125, 1176, 1228, 1281, 1335, 1390, 1446, 1503, 1561, 1621
Offset: 0

Views

Author

Keywords

Comments

Positions of zeros in A025651. - R. J. Mathar, Jul 06 2025

Crossrefs

Programs

  • PARI
    lista(nn) = {v = []; for (n=0, nn, for (m = 0, nn, v = vecsort(concat(v, 5^n*6^m),,8););); n=0; for (k=1, #v, vk = v[k]; if ((valuation(vk, 6)==n) && (valuation(vk, 5) == 0), if (vk > 5^(nn+1), return(), print1(k, ", "); n++);););} \\ Michel Marcus, Sep 28 2015

Formula

a(n) >= binomial(n+2, 2). - David A. Corneth, Jul 20 2017

Extensions

Offset set to 0 by Michel Marcus, Sep 27 2015

A025629 Numbers of form 6^i*10^j with i, j >= 0.

Original entry on oeis.org

1, 6, 10, 36, 60, 100, 216, 360, 600, 1000, 1296, 2160, 3600, 6000, 7776, 10000, 12960, 21600, 36000, 46656, 60000, 77760, 100000, 129600, 216000, 279936, 360000, 466560, 600000, 777600, 1000000, 1296000, 1679616, 2160000, 2799360, 3600000, 4665600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*10^j, {i, 0, Log[6, n]}, {j, 0, Log10[n/6^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=6)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (6*10)/((6-1)*(10-1)) = 4/3. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(6)*log(10)*n)) / sqrt(60). - Vaclav Kotesovec, Sep 26 2020
a(n) = 6^A025663(n) * 10^A025688(n). - R. J. Mathar, Jul 06 2025

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A108201 Numbers of the form (5^i)*(12^j), with i, j >= 0.

Original entry on oeis.org

1, 5, 12, 25, 60, 125, 144, 300, 625, 720, 1500, 1728, 3125, 3600, 7500, 8640, 15625, 18000, 20736, 37500, 43200, 78125, 90000, 103680, 187500, 216000, 248832, 390625, 450000, 518400, 937500, 1080000, 1244160, 1953125, 2250000, 2592000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 15 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Take[Union[5^First[#] 12^Last[#]&/@Tuples[Range[0,20],2]],50] (* Harvey P. Dale, Mar 23 2012 *)

Formula

Sum_{n>=1} 1/a(n) = 15/11. - Amiram Eldar, Mar 29 2025

A025651 Exponent of 5 (value of i) in n-th number of form 5^i*6^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 0, 9, 8, 7, 6, 5, 4, 3, 2, 11, 1, 10, 0, 9, 8, 7, 6, 5, 4, 3, 12, 2, 11, 1, 10, 0, 9, 8, 7, 6, 5, 4, 13, 3, 12, 2, 11, 1, 10, 0, 9, 8, 7, 6, 5, 14, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025622.

A025659 Exponent of 6 (value of j) in n-th number of form 5^i*6^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 0, 9, 1, 10, 2, 3, 4, 5, 6, 7, 8, 0, 9, 1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 0, 9, 1, 10, 2, 11, 3, 12, 4, 5, 6, 7, 8, 0, 9, 1, 10
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025622.
Showing 1-7 of 7 results.