cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003595 Numbers of the form 5^i*7^j with i, j >= 0.

Original entry on oeis.org

1, 5, 7, 25, 35, 49, 125, 175, 245, 343, 625, 875, 1225, 1715, 2401, 3125, 4375, 6125, 8575, 12005, 15625, 16807, 21875, 30625, 42875, 60025, 78125, 84035, 109375, 117649, 153125, 214375, 300125, 390625, 420175, 546875, 588245, 765625, 823543, 1071875, 1500625
Offset: 1

Views

Author

Keywords

Comments

Successive k such that phi(35*k) = 24*k: 35*a(n) = A033851(n). - Artur Jasinski, Nov 09 2008

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003595 n = a003595_list !! (n-1)
    a003595_list = f $ singleton 1 where
       f s = y : f (insert (5 * y) $ insert (7 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..600000] | PrimeDivisors(n) subset [5,7]]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    a = {}; Do[If[EulerPhi[35 k] == 24 k, AppendTo[a, k]], {k, 1, 10000}]; a (* Artur Jasinski, Nov 09 2008 *)
    fQ[n_] := PowerMod[35, n, n] == 0; Select[Range[600000], fQ] (* Bruno Berselli, Sep 24 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(7),N=7^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003595(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//7**i,5)[0]+1 for i in range(integer_log(x,7)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = (5*7)/((5-1)*(7-1)) = 35/24. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(5)*log(7)*n)) / sqrt(35). - Vaclav Kotesovec, Sep 22 2020
a(n) = 5^A025652(n) * 7^A025667(n). - R. J. Mathar, Jul 06 2025

A025723 Index of 7^n within sequence of numbers of form 5^i*7^j.

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 30, 39, 49, 60, 73, 87, 102, 118, 135, 154, 174, 195, 217, 240, 265, 291, 318, 346, 376, 407, 439, 472, 506, 542, 579, 617, 656, 696, 738, 781, 825, 870, 916, 964, 1013, 1063, 1114, 1166, 1220, 1275, 1331, 1388, 1447, 1507, 1568, 1630, 1693
Offset: 0

Views

Author

Keywords

Comments

Positions of zeros in A025652. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025708, A022330, A022331, etc.

Programs

  • Maple
    ListTools:-PartialSums([1,seq(ceil(k*log[5](7)),k=1..100)]); # Robert Israel, Nov 16 2016
  • Mathematica
    Table[1 + Sum[Ceiling[k Log[5, 7]], {k, n}], {n, 0, 52}] (* Michael De Vlieger, Nov 16 2016 *)
  • PARI
    a(n)=my(N=1); n+1+sum(i=1, n, logint(N*=7, 5)); \\ Charles R Greathouse IV, Jan 11 2018
    
  • PARI
    first(n)=my(s, N=1/7); vector(n+1, i, s+=logint(N*=7, 5)+1) \\ Charles R Greathouse IV, Jan 11 2018

Formula

a(n) = 1 + Sum_{k=1..n} ceiling(k*log_5(7)). - Robert Israel, Nov 16 2016

Extensions

Offset changed to 0 by Robert Israel, Nov 16 2016
Showing 1-2 of 2 results.