A025748 3rd-order Patalan numbers (generalization of Catalan numbers).
1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005, eq. (5.1).
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019 -
Maple
A025748 :=proc(n) local x; coeftayl(4-(1-9*x)^(1/3),x=0,n) ; %/3 ; end proc: # R. J. Mathar, Nov 01 2012
-
Mathematica
CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *) Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *) a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
-
PARI
a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
-
Sage
def A025748_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((4 - (1-9*x)^(1/3))/3).list() A025748_list(25) # G. C. Greubel, Sep 17 2019
Formula
From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) + 3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
For n >= 1, a(n) = Integral_{x = 0..9} x^n * w(x) dx, where w(x) = 1/(2*sqrt(3)*Pi) * x^(2/3)*(9 - x)^(1/3)/x^2. - Peter Bala, Oct 14 2024
a(n) ~ 9^(n-1) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025
Comments