A048966 A convolution triangle of numbers obtained from A025748.
1, 3, 1, 15, 6, 1, 90, 39, 9, 1, 594, 270, 72, 12, 1, 4158, 1953, 567, 114, 15, 1, 30294, 14580, 4482, 1008, 165, 18, 1, 227205, 111456, 35721, 8667, 1620, 225, 21, 1, 1741905, 867834, 287199, 73656, 15075, 2430, 294, 24, 1, 13586859, 6857136, 2328183, 623106, 136323, 24354, 3465, 372, 27, 1
Offset: 1
Examples
Triangle begins: 1; 3, 1; 15, 6, 1; 90, 39, 9, 1; 594, 270, 72, 12, 1; 4158, 1953, 567, 114, 15, 1;
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Programs
-
Haskell
a048966 n k = a048966_tabl !! (n-1) !! (k-1) a048966_row n = a048966_tabl !! (n-1) a048966_tabl = [1] : f 2 [1] where f x xs = ys : f (x + 1) ys where ys = map (flip div x) $ zipWith (+) (map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0])) (zipWith (*) [1..] ([0] ++ xs)) -- Reinhard Zumkeller, Feb 19 2014
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)
Formula
a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011
A127988 Sequence determining the parity of A025748.
0, 8, 32, 40, 128, 136, 160, 168, 512, 520, 544, 552, 640, 648, 672, 680, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2560, 2568, 2592, 2600, 2688, 2696, 2720, 2728, 8192, 8200, 8224, 8232, 8320, 8328, 8352, 8360, 8704, 8712, 8736
Offset: 0
Comments
Odd terms occur in A025748 at positions (0),1,2,3,(8),9,10,11,(32),33,34,35,(40),...
Formula
a(n)=8*A000695(n); a(n)=4*sum{k=0..floor(log_2(n+1)), mod(floor(n/2^k),2)2^(2k+1)};
A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).
1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0
Comments
Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009
Examples
G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
- C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
- C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- T. Amdeberhan and V. H. Moll, Arithmetic properties of plane partitions, El. J. Comb. 18 (2) (2011) # P1.
- G. E. Andrews, Plane partitions (III): the Weak Macdonald Conjecture, Invent. Math., 53 (1979), 193-225. (See Theorem 10.)
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Paul Barry, A Riordan array family for some integrable lattice models, arXiv:2409.09547 [math.CO], 2024.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 7.
- M. T. Batchelor, J. de Gier, and B. Nienhuis, The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, arXiv:cond-mat/0101385 [cond-mat.stat-mech], 2001.
- Andrew Beveridge, Ian Calaway, and Kristin Heysse, de Finetti Lattices and Magog Triangles, arXiv:1912.12319 [math.CO], 2019.
- E. Beyerstedt, V. H. Moll, and X. Sun, The p-adic Valuation of the ASM Numbers, J. Int. Seq. 14 (2011) # 11.8.7.
- Sara Billey and Matjaž Konvalinka, Generalized rank functions and quilts of alternating sign matrices, arXiv:2412.03236 [math.CO], 2024. See p. 33.
- Sara C. Billey, Brendon Rhoades, and Vasu Tewari, Boolean product polynomials, Schur positivity, and Chern plethysm, arXiv:1902.11165 [math.CO], 2019.
- D. M. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., 46 (No. 6, 1999), 637-646.
- H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013-2015.
- M. Ciucu, The equivalence between enumerating cyclically symmetric, self-complementary and totally symmetric, self-complementary plane partitions, J. Combin. Theory Ser. A 86 (1999), 382-389.
- F. Colomo and A. G. Pronko, On the refined 3-enumeration of alternating sign matrices, arXiv:math-ph/0404045, 2004; Advances in Applied Mathematics 34 (2005) 798.
- F. Colomo and A. G. Pronko, Square ice, alternating sign matrices and classical orthogonal polynomials, arXiv:math-ph/0411076, 2004; JSTAT (2005) P01005.
- G. Conant, Magmas and Magog Triangles, 2014.
- J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
- P. Di Francesco, A refined Razumov-Stroganov conjecture II, arXiv:cond-mat/0409576 [cond-mat.stat-mech], 2004.
- P. Di Francesco, Twenty Vertex model and domino tilings of the Aztec triangle, arXiv:2102.02920 [math.CO], 2021. Mentions this sequence.
- P. Di Francesco, P. Zinn-Justin, and J.-B. Zuber, Determinant formulas for some tiling problems..., arXiv:math-ph/0410002, 2004.
- FindStat - Combinatorial Statistic Finder, Alternating sign matrices
- I. Fischer, The number of monotone triangles with prescribed bottom row, arXiv:math/0501102 [math.CO], 2005.
- Ilse Fischer and Manjil P. Saikia, Refined Enumeration of Symmetry Classes of Alternating Sign Matrices, arXiv:1906.07723 [math.CO], 2019.
- Ilse Fischer and Matjaz Konvalinka, A bijective proof of the ASM theorem, Part I: the operator formula, arXiv:1910.04198 [math.CO], 2019.
- T. Fonseca and F. Balogh, The higher spin generalization of the 6-vertex model with domain wall boundary conditions and Macdonald polynomials, Journal of Algebraic Combinatorics, 2014, arXiv:1210.4527
- D. D. Frey and J. A. Sellers, Jacobsthal Numbers and Alternating Sign Matrices, Journal of Integer Sequences Vol. 3 (2000) #00.2.3.
- D. D. Frey and J. A. Sellers, Prime Power Divisors of the Number of n X n Alternating Sign Matrices
- Markus Fulmek, A statistics-respecting bijection between permutation matrices and descending plane partitions without special parts, Electronic journal of combinatorics, 27(1) (2020), #P1.391.
- M. Gardner, Letter to N. J. A. Sloane, Jun 20 1991.
- C. Heuberger and H. Prodinger, A precise description of the p-adic valuation of the number of alternating sign matrices, Intl. J. Numb. Th. 7 (1) (2011) 57-69.
- Dylan Heuer, Chelsey Morrow, Ben Noteboom, Sara Solhjem, Jessica Striker, and Corey Vorland. "Chained permutations and alternating sign matrices - Inspired by three-person chess." Discrete Mathematics 340, no. 12 (2017): 2732-2752. Also arXiv:1611.03387.
- Frederick Huang, The 20 Vertex Model and Related Domino Tilings, Ph. D. Dissertation, UC Berkeley, 2023. See p. 1.
- Hassan Isanloo, The volume and Ehrhart polynomial of the alternating sign matrix polytope, Cardiff University (Wales, UK 2019).
- Masato Kobayashi, Weighted counting of inversions on alternating sign matrices, arXiv:1904.02265 [math.CO], 2019.
- G. Kuperberg, Another proof of the alternating-sign matrix conjecture, arXiv:math/9712207 [math.CO], 1997; Internat. Math. Res. Notices, No. 3, (1996), 139-150.
- G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001; Ann. Math. 156 (3) (2002) 835-866
- W. H. Mills, David P Robbins, and Howard Rumsey Jr., Alternating sign matrices and descending plane partitions J. Combin. Theory Ser. A 34 (1983), no. 3, 340--359. MR0700040 (85b:05013).
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386. [Annotated scanned copy]
- J. Propp, The many faces of alternating-sign matrices, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 43-58.
- A. V. Razumov and Yu. G. Stroganov, Spin chains and combinatorics, arXiv:cond-mat/0012141 [cond-mat.stat-mech], 2000.
- Lukas Riegler, Simple enumeration formulas related to Alternating Sign Monotone Triangles and standard Young tableaux, Dissertation, Universitat Wien, 2014.
- D. P. Robbins, The story of 1, 2, 7, 42, 429, 7436, ..., Math. Intellig., 13 (No. 2, 1991), 12-19.
- D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
- Yu. G. Stroganov, 3-enumerated alternating sign matrices, arXiv:math-ph/0304004, 2003.
- X. Sun and V. H. Moll, The p-adic Valuations of Sequences Counting Alternating Sign Matrices, JIS 12 (2009) 09.3.8.
- Eric Weisstein's World of Mathematics, Alternating Sign Matrix
- Eric Weisstein's World of Mathematics, Descending Plane Partition
- D. Zeilberger, Proof of the alternating-sign matrix conjecture, arXiv:math/9407211 [math.CO], 1994.
- D. Zeilberger, Proof of the alternating-sign matrix conjecture, Elec. J. Combin., Vol. 3 (Number 2) (1996), #R13.
- D. Zeilberger, Proof of the Refined Alternating Sign Matrix Conjecture, arXiv:math/9606224 [math.CO], 1996.
- D. Zeilberger, A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Ramsey numbers 1,2,7,42,429,..., J. Combin. Theory, A 66 (1994), 17-27. The link is to a comment on Doron Zeilberger's home page. A backup copy is here [pdf file only, no active links]
- D. Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954. The link is to a version on Doron Zeilberger's home page. A backup copy is here [pdf file only, no active links]
- Paul Zinn-Justin, Integrability and combinatorics, arXiv:2404.13221 [math.CO], 2024. See p. 12.
- Index entries for sequences related to factorial numbers
- Index entries for "core" sequences
Crossrefs
Programs
-
GAP
a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
-
Maple
A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end; # Bill Gosper's approximation (for n>0): a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
-
Mathematica
f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *) a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
-
PARI
{a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
-
Python
from math import prod, factorial def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022
Formula
a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021
A034000 One half of triple factorial numbers.
1, 5, 40, 440, 6160, 104720, 2094400, 48171200, 1252451200, 36321084800, 1162274713600, 40679614976000, 1545825369088000, 63378840132608000, 2788668965834752000, 131067441394233344000, 6553372069711667200000, 347328719694718361600000, 19450408302904228249600000
Offset: 1
Comments
Preface the series with a 1, then the next term = (1, 4, 7, 10, ...) dot (1, 1, 5, 40, ...). E.g., a(5) = 6160 = (1, 4, 7, 10, 13) dot (1, 1, 5, 40, 440) = (1 + 4 + 35 + 400 + 5720). - Gary W. Adamson, May 17 2010
In other words, a(n) = Sum_{i=0..n-1} b(i)*A016777(i) where b(0)=1 and b(n)=a(n). - Michel Marcus, Dec 18 2022
Links
- G. C. Greubel, Table of n, a(n) for n = 1..375
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
Programs
-
GAP
a:=[1];; for n in [2..20] do a[n]:=(3*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
-
Magma
[n le 1 select 1 else (3*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
-
Maple
A034000:=n->`if`(n=1, 1, (3*n-1)*A034000(n-1)); seq(A034000(n), n=1..20); # G. C. Greubel, Aug 15 2019
-
Mathematica
nxt[{n_,a_}]:={n+1,(3(n+1)-1)*a}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 22 2015 *) Table[3^(n-1)*Pochhammer[5/3, n-1], {n,20}] (* G. C. Greubel, Aug 15 2019 *)
-
PARI
m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(3*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
-
Sage
def a(n): if n==1: return 1 else: return (3*n-1)*a(n-1) [a(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
Formula
2*a(n+1) = (3*n+2)!!! = Product_{j=0..n} (3*j+2), n >= 0.
E.g.f.: (-1 + (1-3*x)^(-2/3))/2.
a(n) = (3*n-1)!/(2*3^(n-1)*(n-1)!*A007559(n)).
a(n) ~ 3/2*2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(7/6)*3^n*e^-n*n^n*{1 + 23/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = 3^n*(n+2/3)!/(2/3)!, with offset 0. - Paul Barry, Sep 04 2005
D-finite with recurrence a(n) + (1-3*n)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
Sum_{n>=1} 1/a(n) = 2*(e/3)^(1/3)*(Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Dec 18 2022
A097188 G.f. A(x) satisfies A057083(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097186.
1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4, eq.(23) for l=4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 - (1-9*x)^(1/3))/(3*x) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series((1-(1-9*x)^(1/3))/(3*x), x, n+2), x, n), n = 0..25); # G. C. Greubel, Sep 17 2019
-
Mathematica
Table[FullSimplify[9^n * Gamma[n+2/3] / ((n+1) * Gamma[2/3] * Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *) CoefficientList[Series[(1-(1 - 9 x)^(1/3))/(3 x), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2014 *)
-
PARI
a(n)=polcoeff((1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x),n,x)
-
Sage
def A097188_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((1 - (1-9*x)^(1/3))/(3*x)).list() A097188_list(25) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = (1 - (1-9*x)^(1/3))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A057083(x)).
a(n) = A004988(n)/(n+1).
a(n) = A025748(n+1).
a(n) = 3*A034164(n-1) for n>=1.
x*A(x) is the compositional inverse of x-3*x^2+3*x^3. - Ira M. Gessel, Feb 18 2012
a(n) = 1/(n+1) * Sum_{k=1..n} binomial(k,n-k) * 3^(k)*(-1)^(n-k) * binomial(n+k,n), if n>0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 9^n * Gamma(n+2/3) / ((n+1) * Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 21/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
A034171 Related to triple factorial numbers A007559(n+1).
1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0
Comments
Working with an offset of 1, we conjecture a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 3) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/3 and 1 <= k <= (p-1)/3. Cf. A298799, A004981 and A004982. - Peter Bala, Dec 23 2019
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1050
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Programs
-
Mathematica
CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)
Formula
G.f.: (-1+(1-9*x)^(-1/3))/(3*x).
a(n) = A035529(n+1, 1) (first column of triangle).
From R. J. Mathar, Jan 28 2020: (Start)
D-finite with recurrence: (n+1)*a(n) + 3*(-3*n-1)*a(n-1) = 0.
G.f.: (1F0(1/3;;9*x)-1)/(3*x). (End)
Sum_{n>=0} 1/a(n) = 3/8 + 3*sqrt(3)*Pi/32 + 9*log(3)/32. - Amiram Eldar, Dec 22 2022
a(n) ~ 3^(2*n+1) * n^(-2/3) / Gamma(1/3). - Amiram Eldar, Aug 19 2025
A004989 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).
1, -6, -9, -36, -189, -1134, -7371, -50544, -360126, -2640924, -19806930, -151252920, -1172210130, -9197341020, -72921775230, -583374201840, -4703454502335, -38180983607190, -311811366125385, -2560135427134740, -21121117273861605, -175003543126281870, -1455711290550435555
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k-2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
-
Magma
[1] cat [3^n*(&*[3*k-2: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
-
Maple
a:= n-> (3^n/n!)*product(3*k-2, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
-
Mathematica
Table[9^n*Pochhammer[-2/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
-
PARI
a(n)=if(n<0,0,prod(k=0,n-1,3*k-2)*3^n/n!)
-
Sage
[9^n*rising_factorial(-2/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
Formula
a(n) ~ -(2/3)*Gamma(1/3)^-1*n^(-5/3)*3^(2*n)*(1 + (5/9)*n^-1 + ...).
G.f.: (1-9*x)^(2/3).
D-finite with recurrence: n*a(n) +3*(-3*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 99/128 - 5*sqrt(3)*Pi/512 - 15*log(3)/512. - Amiram Eldar, Dec 02 2022
From Peter Bala, Oct 14 2024: (Start)
a(n) = -1/(sqrt(3)*Pi) * 9^n * Gamma(2/3)*Gamma(n-2/3)/Gamma(n+1).
For n >= 1, a(n) = - Integral_{x = 0..9} x^n * w(x) dx, where w(x) = sqrt(3)/(2*Pi) * x^(1/3)*(9 - x)^(2/3)/x^2. (End)
A034164 Related to triple factorial numbers 2*A034000(n+1).
1, 5, 30, 198, 1386, 10098, 75735, 580635, 4528953, 35819901, 286559208, 2314516680, 18846778680, 154543585176, 1274984577702, 10574872085646, 88123934047050, 737458184920050, 6194648753328420, 52212039492339540, 441429061162507020, 3742550735942994300
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 -3*x -(1-9*x)^(1/3))/(3*x)^2 )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series((1-3*x-(1-9*x)^(1/3))/(3*x)^2, x, n+2), x, n), n = 0..32); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[ HypergeometricPFQ[{1, 5/3}, {3}, 9 x], {x, 0, 20}], x] Table[FullSimplify[3^(2*n+1) * Gamma[n+5/3] / ((n+2) * Gamma[2/3] * Gamma[n+2])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *) CoefficientList[Series[(1 -3x -(1-9 x)^(1/3))/(3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
-
PARI
my(x='x+O('x^30)); Vec((1 -3*x -(1-9*x)^(1/3))/(3*x)^2) \\ G. C. Greubel, Sep 17 2019
-
Sage
def A034164_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((1 -3*x -(1-9*x)^(1/3))/(3*x)^2).list() A034164_list(30) # G. C. Greubel, Sep 17 2019
Formula
a(n) = 3^n*(3*n+2)!!!/(n+2)!, where (3*n+2)!!! = 2*A034000(n+1).
G.f.: (1 - 3*x - (1-9*x)^(1/3))/(3*x)^2.
G.f.: 2F1( (1, 5/3); 3; 9 x ). - Olivier Gérard, Feb 15 2011
D-finite with recurrence: (n+2)*a(n) - 3*(3*n+2)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012
a(n) = 3^(2*n+1) * Gamma(n+5/3) / ((n+2) * Gamma(2/3) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
Integral representation as the n-th moment of a positive function on (0,9): a(n) = Integral_{x=0..9} x^n*W(x) dx, n >= 0, where W(x) = (1/18)*9^(1/3)*sqrt(3)*x^(2/3)*(1-x/9)^(1/3)/Pi. This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson, Nov 07 2015
Sum_{n>=0} 1/a(n) = 15/16 + (27/64)*(Pi*sqrt(3)/3 - log(3)). - Amiram Eldar, Dec 02 2022
a(n) ~ 3^(2*n+1) * n^(-4/3) / Gamma(2/3). - Amiram Eldar, Aug 19 2025
A254287 Expansion of (1 - (1 - 3125*x)^(1/5)) / (625*x).
1, 1250, 2343750, 5126953125, 12176513671875, 30441284179687500, 78821182250976562500, 209368765354156494140625, 567040406167507171630859375, 1559361116960644721984863281250, 4341403109719976782798767089843750, 12210196246087434701621532440185546875
Offset: 0
Comments
In general, if k > 1 and g.f. = (1 - (1 - k^k * x)^(1/k)) / (k^(k-1) * x), then a(n) ~ k^(k*n) / (Gamma((k-1)/k) * n^((k+1)/k)).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Programs
-
Magma
[Round(5^(5*n)*Gamma(n+4/5)/(Gamma(4/5)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
-
Mathematica
CoefficientList[Series[(1-(1-3125*x)^(1/5)) / (625*x),{x,0,20}],x] CoefficientList[Series[Hypergeometric1F1[4/5,2,3125*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
SageMath
[5^(5*n)*rising_factorial(4/5, n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022
Formula
G.f.: (1 - (1 - 3125*x)^(1/5)) / (625*x).
a(n) ~ 3125^n / (Gamma(4/5) * n^(6/5)).
Recurrence: (n+1)*a(n) = 625*(5*n-1)*a(n-1).
a(n) = 5^(5*n) * Gamma(n+4/5) / (Gamma(4/5) * Gamma(n+2)).
E.g.f.: hypergeom([4/5], [2], 3125*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/5, n+1)*5^(5*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 125^n*A025748(n+1). (End)
A059486 3-enumeration of 2n+1 X 2n+1 vertically symmetric alternating-sign matrices.
1, 1, 5, 126, 16038, 10320453, 33590259846, 553104735325740, 46084184498427053436, 19430969437346561065941390, 41463730793298298041665385308325, 447814224393522724673729884056814834500, 24479424309393636290695101063892553945412075000
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..53
- G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001. [Th. 3, but the formula there is incorrect]
- J. Propp, The many faces of alternating-sign matrices, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 43-58.
Programs
-
Maple
A059486 := proc(n) local i, j, t1; t1 := 3^(2*n^2)/2^(2*n^2 + n); for i to 2*n + 1 do for j to 2*n + 1 do if i mod 2 <> 0 and j mod 2 = 0 then t1 := t1*(3*j - 3*i + 1)/(3*j - 3*i) end if end do end do; t1 end proc; e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } # Harry J. Smith, Jun 27 2009
-
Mathematica
a[n_] := Module[{i, j, t1}, t1 = 3^(2*n^2)/2^(2*n^2 + n); For[i = 1, i <= 2*n + 1, i++, For[j = 1, j <= 2*n + 1, j++, If[Mod[i, 2] != 0 && Mod[j, 2] == 0, t1 = t1*(3*j - 3*i + 1)/(3*j - 3*i)]]]; t1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *) Table[3^(2*n^2)/2^(2*n^2 + n) * Product[(2 + 6*i - 6*j)/(3 + 6*i - 6*j), {i, 0, n}, {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Feb 24 2019 *)
-
PARI
a(n)=local(A); if(n<0,0,A=Vec((1-(1-9*x+O(x^(2*n+1)))^(1/3))/(3*x)); matdet(matrix(n,n,i,j,A[i+j]))/3^n)
-
PARI
e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
Formula
a(n) ~ exp(1/36) * Gamma(1/3)^(1/3) * 3^(n*(4*n + 1)/2 + 11/36) * n^(1/36) / (2^(2*n*(n+1) + 7/12) * A^(1/3) * Pi^(1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
Comments