cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A048966 A convolution triangle of numbers obtained from A025748.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 90, 39, 9, 1, 594, 270, 72, 12, 1, 4158, 1953, 567, 114, 15, 1, 30294, 14580, 4482, 1008, 165, 18, 1, 227205, 111456, 35721, 8667, 1620, 225, 21, 1, 1741905, 867834, 287199, 73656, 15075, 2430, 294, 24, 1, 13586859, 6857136, 2328183, 623106, 136323, 24354, 3465, 372, 27, 1
Offset: 1

Views

Author

Keywords

Comments

A generalization of the Catalan triangle A033184.

Examples

			Triangle begins:
     1;
     3,    1;
    15,    6,    1;
    90,   39,    9,    1;
   594,  270,   72,   12,    1;
  4158, 1953,  567,  114,   15,    1;
		

Crossrefs

Cf. A034000, A049213, A049223, A049224. a(n, 1)= A025748(n), a(n, 1)= 3^(n-1)*2*A034000(n-1)/n!, n >= 2. Row sums = A025756.

Programs

  • Haskell
    a048966 n k = a048966_tabl !! (n-1) !! (k-1)
    a048966_row n = a048966_tabl !! (n-1)
    a048966_tabl = [1] : f 2 [1] where
       f x xs = ys : f (x + 1) ys where
         ys = map (flip div x) $ zipWith (+)
              (map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0]))
              (zipWith (*) [1..] ([0] ++ xs))
    -- Reinhard Zumkeller, Feb 19 2014
  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)

Formula

a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011

A127988 Sequence determining the parity of A025748.

Original entry on oeis.org

0, 8, 32, 40, 128, 136, 160, 168, 512, 520, 544, 552, 640, 648, 672, 680, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2560, 2568, 2592, 2600, 2688, 2696, 2720, 2728, 8192, 8200, 8224, 8232, 8320, 8328, 8352, 8360, 8704, 8712, 8736
Offset: 0

Author

Paul Barry, Feb 09 2007

Keywords

Comments

Odd terms occur in A025748 at positions (0),1,2,3,(8),9,10,11,(32),33,34,35,(40),...

Formula

a(n)=8*A000695(n); a(n)=4*sum{k=0..floor(log_2(n+1)), mod(floor(n/2^k),2)2^(2k+1)};

A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).

Original entry on oeis.org

1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0

Keywords

Comments

Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
  • C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • GAP
    a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
    
  • Maple
    A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end;
    # Bill Gosper's approximation (for n>0):
    a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
  • Mathematica
    f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
    a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
    
  • Python
    from math import prod, factorial
    def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022

Formula

a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021

A034000 One half of triple factorial numbers.

Original entry on oeis.org

1, 5, 40, 440, 6160, 104720, 2094400, 48171200, 1252451200, 36321084800, 1162274713600, 40679614976000, 1545825369088000, 63378840132608000, 2788668965834752000, 131067441394233344000, 6553372069711667200000, 347328719694718361600000, 19450408302904228249600000
Offset: 1

Keywords

Comments

Preface the series with a 1, then the next term = (1, 4, 7, 10, ...) dot (1, 1, 5, 40, ...). E.g., a(5) = 6160 = (1, 4, 7, 10, 13) dot (1, 1, 5, 40, 440) = (1 + 4 + 35 + 400 + 5720). - Gary W. Adamson, May 17 2010
In other words, a(n) = Sum_{i=0..n-1} b(i)*A016777(i) where b(0)=1 and b(n)=a(n). - Michel Marcus, Dec 18 2022

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(3*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (3*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034000:=n->`if`(n=1, 1, (3*n-1)*A034000(n-1)); seq(A034000(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,(3(n+1)-1)*a}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 22 2015 *)
    Table[3^(n-1)*Pochhammer[5/3, n-1], {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(3*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def a(n):
        if n==1: return 1
        else: return (3*n-1)*a(n-1)
    [a(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

a(n) = A007661(3n-1)/2 = A008544(n)/2.
2*a(n+1) = (3*n+2)!!! = Product_{j=0..n} (3*j+2), n >= 0.
E.g.f.: (-1 + (1-3*x)^(-2/3))/2.
a(n) = (3*n-1)!/(2*3^(n-1)*(n-1)!*A007559(n)).
a(n) ~ 3/2*2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(7/6)*3^n*e^-n*n^n*{1 + 23/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = 3^n*(n+2/3)!/(2/3)!, with offset 0. - Paul Barry, Sep 04 2005
D-finite with recurrence a(n) + (1-3*n)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
Sum_{n>=1} 1/a(n) = 2*(e/3)^(1/3)*(Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Dec 18 2022

A097188 G.f. A(x) satisfies A057083(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097186.

Original entry on oeis.org

1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620
Offset: 0

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Essentially identical to A025748.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 - (1-9*x)^(1/3))/(3*x) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-(1-9*x)^(1/3))/(3*x), x, n+2), x, n), n = 0..25); # G. C. Greubel, Sep 17 2019
  • Mathematica
    Table[FullSimplify[9^n * Gamma[n+2/3] / ((n+1) * Gamma[2/3] * Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1-(1 - 9 x)^(1/3))/(3 x), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2014 *)
  • PARI
    a(n)=polcoeff((1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x),n,x)
    
  • Sage
    def A097188_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1 - (1-9*x)^(1/3))/(3*x)).list()
    A097188_list(25) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = (1 - (1-9*x)^(1/3))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A057083(x)).
a(n) = A004988(n)/(n+1).
a(n) = A025748(n+1).
a(n) = 3*A034164(n-1) for n>=1.
x*A(x) is the compositional inverse of x-3*x^2+3*x^3. - Ira M. Gessel, Feb 18 2012
a(n) = 1/(n+1) * Sum_{k=1..n} binomial(k,n-k) * 3^(k)*(-1)^(n-k) * binomial(n+k,n), if n>0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 9^n * Gamma(n+2/3) / ((n+1) * Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 21/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022

A034171 Related to triple factorial numbers A007559(n+1).

Original entry on oeis.org

1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0

Keywords

Comments

Working with an offset of 1, we conjecture a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 3) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/3 and 1 <= k <= (p-1)/3. Cf. A298799, A004981 and A004982. - Peter Bala, Dec 23 2019

Programs

  • Mathematica
    CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 3^n*A007559(n+1)/(n+1)! where A007559(n+1)=(3*n+1)!!!.
G.f.: (-1+(1-9*x)^(-1/3))/(3*x).
a(n) = A035529(n+1, 1) (first column of triangle).
Convolution of A004987(n) with A025748(n+1), n >= 0.
From R. J. Mathar, Jan 28 2020: (Start)
D-finite with recurrence: (n+1)*a(n) + 3*(-3*n-1)*a(n-1) = 0.
G.f.: (1F0(1/3;;9*x)-1)/(3*x). (End)
Sum_{n>=0} 1/a(n) = 3/8 + 3*sqrt(3)*Pi/32 + 9*log(3)/32. - Amiram Eldar, Dec 22 2022
a(n) ~ 3^(2*n+1) * n^(-2/3) / Gamma(1/3). - Amiram Eldar, Aug 19 2025

A004989 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).

Original entry on oeis.org

1, -6, -9, -36, -189, -1134, -7371, -50544, -360126, -2640924, -19806930, -151252920, -1172210130, -9197341020, -72921775230, -583374201840, -4703454502335, -38180983607190, -311811366125385, -2560135427134740, -21121117273861605, -175003543126281870, -1455711290550435555
Offset: 0

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k-2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k-2: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k-2, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[-2/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,3*k-2)*3^n/n!)
    
  • Sage
    [9^n*rising_factorial(-2/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) ~ -(2/3)*Gamma(1/3)^-1*n^(-5/3)*3^(2*n)*(1 + (5/9)*n^-1 + ...).
G.f.: (1-9*x)^(2/3).
D-finite with recurrence: n*a(n) +3*(-3*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 99/128 - 5*sqrt(3)*Pi/512 - 15*log(3)/512. - Amiram Eldar, Dec 02 2022
From Peter Bala, Oct 14 2024: (Start)
a(n) = -1/(sqrt(3)*Pi) * 9^n * Gamma(2/3)*Gamma(n-2/3)/Gamma(n+1).
For n >= 1, a(n) = - Integral_{x = 0..9} x^n * w(x) dx, where w(x) = sqrt(3)/(2*Pi) * x^(1/3)*(9 - x)^(2/3)/x^2. (End)

A034164 Related to triple factorial numbers 2*A034000(n+1).

Original entry on oeis.org

1, 5, 30, 198, 1386, 10098, 75735, 580635, 4528953, 35819901, 286559208, 2314516680, 18846778680, 154543585176, 1274984577702, 10574872085646, 88123934047050, 737458184920050, 6194648753328420, 52212039492339540, 441429061162507020, 3742550735942994300
Offset: 0

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 -3*x -(1-9*x)^(1/3))/(3*x)^2 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-3*x-(1-9*x)^(1/3))/(3*x)^2, x, n+2), x, n), n = 0..32); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[ HypergeometricPFQ[{1, 5/3}, {3}, 9 x], {x, 0, 20}], x]
    Table[FullSimplify[3^(2*n+1) * Gamma[n+5/3] / ((n+2) * Gamma[2/3] * Gamma[n+2])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1 -3x -(1-9 x)^(1/3))/(3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((1 -3*x -(1-9*x)^(1/3))/(3*x)^2) \\ G. C. Greubel, Sep 17 2019
    
  • Sage
    def A034164_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1 -3*x -(1-9*x)^(1/3))/(3*x)^2).list()
    A034164_list(30) # G. C. Greubel, Sep 17 2019

Formula

a(n) = 3^n*(3*n+2)!!!/(n+2)!, where (3*n+2)!!! = 2*A034000(n+1).
G.f.: (1 - 3*x - (1-9*x)^(1/3))/(3*x)^2.
G.f.: 2F1( (1, 5/3); 3; 9 x ). - Olivier Gérard, Feb 15 2011
D-finite with recurrence: (n+2)*a(n) - 3*(3*n+2)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012
a(n) = 3^(2*n+1) * Gamma(n+5/3) / ((n+2) * Gamma(2/3) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
Integral representation as the n-th moment of a positive function on (0,9): a(n) = Integral_{x=0..9} x^n*W(x) dx, n >= 0, where W(x) = (1/18)*9^(1/3)*sqrt(3)*x^(2/3)*(1-x/9)^(1/3)/Pi. This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson, Nov 07 2015
Sum_{n>=0} 1/a(n) = 15/16 + (27/64)*(Pi*sqrt(3)/3 - log(3)). - Amiram Eldar, Dec 02 2022
a(n) ~ 3^(2*n+1) * n^(-4/3) / Gamma(2/3). - Amiram Eldar, Aug 19 2025

A254287 Expansion of (1 - (1 - 3125*x)^(1/5)) / (625*x).

Original entry on oeis.org

1, 1250, 2343750, 5126953125, 12176513671875, 30441284179687500, 78821182250976562500, 209368765354156494140625, 567040406167507171630859375, 1559361116960644721984863281250, 4341403109719976782798767089843750, 12210196246087434701621532440185546875
Offset: 0

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Comments

In general, if k > 1 and g.f. = (1 - (1 - k^k * x)^(1/k)) / (k^(k-1) * x), then a(n) ~ k^(k*n) / (Gamma((k-1)/k) * n^((k+1)/k)).

Crossrefs

Cf. A000108 (k=2), A254282 (k=3), A254286 (k=4).

Programs

  • Magma
    [Round(5^(5*n)*Gamma(n+4/5)/(Gamma(4/5)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
    
  • Mathematica
    CoefficientList[Series[(1-(1-3125*x)^(1/5)) / (625*x),{x,0,20}],x]
    CoefficientList[Series[Hypergeometric1F1[4/5,2,3125*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
  • SageMath
    [5^(5*n)*rising_factorial(4/5, n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022

Formula

G.f.: (1 - (1 - 3125*x)^(1/5)) / (625*x).
a(n) ~ 3125^n / (Gamma(4/5) * n^(6/5)).
Recurrence: (n+1)*a(n) = 625*(5*n-1)*a(n-1).
a(n) = 5^(5*n) * Gamma(n+4/5) / (Gamma(4/5) * Gamma(n+2)).
E.g.f.: hypergeom([4/5], [2], 3125*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/5, n+1)*5^(5*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 125^n*A025748(n+1). (End)

A059486 3-enumeration of 2n+1 X 2n+1 vertically symmetric alternating-sign matrices.

Original entry on oeis.org

1, 1, 5, 126, 16038, 10320453, 33590259846, 553104735325740, 46084184498427053436, 19430969437346561065941390, 41463730793298298041665385308325, 447814224393522724673729884056814834500, 24479424309393636290695101063892553945412075000
Offset: 0

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Crossrefs

Programs

  • Maple
    A059486 := proc(n) local i, j, t1; t1 := 3^(2*n^2)/2^(2*n^2 + n); for i to 2*n + 1 do for j to 2*n + 1 do if i mod 2 <> 0 and j mod 2 = 0 then t1 := t1*(3*j - 3*i + 1)/(3*j - 3*i) end if end do end do; t1 end proc;
    e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } # Harry J. Smith, Jun 27 2009
  • Mathematica
    a[n_] := Module[{i, j, t1}, t1 = 3^(2*n^2)/2^(2*n^2 + n); For[i = 1, i <= 2*n + 1, i++, For[j = 1, j <= 2*n + 1, j++, If[Mod[i, 2] != 0 && Mod[j, 2] == 0, t1 = t1*(3*j - 3*i + 1)/(3*j - 3*i)]]]; t1];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
    Table[3^(2*n^2)/2^(2*n^2 + n) * Product[(2 + 6*i - 6*j)/(3 + 6*i - 6*j), {i, 0, n}, {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Feb 24 2019 *)
  • PARI
    a(n)=local(A); if(n<0,0,A=Vec((1-(1-9*x+O(x^(2*n+1)))^(1/3))/(3*x)); matdet(matrix(n,n,i,j,A[i+j]))/3^n)
    
  • PARI
    e(n)= { local(A); A=Vec((1 - (1 - 9*x + O(x^(2*n + 1)))^(1/3))/(3*x)); matdet(matrix(n, n, i, j, A[i+j]))/3^n; } { for (n = 0, 100, a=e(n); if (a > 10^(10^3 - 6), break); write("b059486.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009

Formula

a(n) ~ exp(1/36) * Gamma(1/3)^(1/3) * 3^(n*(4*n + 1)/2 + 11/36) * n^(1/36) / (2^(2*n*(n+1) + 7/12) * A^(1/3) * Pi^(1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
Showing 1-10 of 14 results. Next