A035529 A convolution triangle of numbers obtained from A034171.
1, 6, 1, 42, 12, 1, 315, 120, 18, 1, 2457, 1134, 234, 24, 1, 19656, 10458, 2673, 384, 30, 1, 160056, 95256, 28539, 5148, 570, 36, 1, 1320462, 861597, 292572, 62532, 8775, 792, 42, 1, 11003850, 7760610, 2920347, 713664, 119565, 13770, 1050, 48, 1
Offset: 1
Examples
Triangle begins: 1, 6, 1; 42, 12, 1; 315, 120, 18, 1; 2457, 1134, 234, 24, 1; 19656, 10458, 2673, 384, 30, 1; ...
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Mathematica
a[n_, m_] /; n - 1 >= m >= 1 := (m*a[n - 1, m - 1])/n + (3*(m + 3*(n - 1))*a[n - 1, m])/n; a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[n_, n_] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 10 2012, from formula *)
Formula
a(n+1, m) = 3*(3*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((-1+(1-9*x)^(-1/3))/3)^m.
A035012 One half of 9-factorial numbers.
1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
SageMath
[9^n*rising_factorial(2/9,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Formula
2*a(n) = (9*n-7)(!^9) := Product_{j=1..n} (9*j - 7).
E.g.f.: (-1+(1-9*x)^(-2/9))/2.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/2) * 9^n * Pochhammer(n, 2/9).
a(n) = (9*n-7)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A084949(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). (End)
A035022 One eighth of 9-factorial numbers.
1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
Maple
f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember); map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Mathematica
Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
SageMath
[9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
Formula
8*a(n) = (9*n-1)(!^9) := Product_{j=1..n} (9*j - 1).
a(n) = (9*n)!/(n!*2^4*3^(4*n)*5*7*A045756(n)*A035012(n)*A007559(n)*A035017(n) *A035018(n)*A034000(n) *A035021(n)).
E.g.f.: (-1+(1-9*x)^(-8/9))/8.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 1)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/8) * 9^n * Pochhammer(n, 8/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A049211(n)/8.
Sum_{n>=1} 1/a(n) = 8*(e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). (End)
A035023 One ninth of 9-factorial numbers.
1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1
Comments
E.g.f. is g.f. for A001019(n-1) (powers of nine).
Links
Crossrefs
Programs
-
Magma
[9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
Mathematica
With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *) Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
SageMath
[9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022
Formula
9*a(n) = (9*n)(!^9) = Product_{j=1..n} 9*j = 9^n*n!.
E.g.f.: (-1+1/(1-9*x))/9.
D-finite with recurrence: a(n) - 9*n*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 9*(exp(1/9)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*(1-exp(-1/9)). (End)
A035013 One third of 9-factorial numbers.
1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1
Comments
E.g.f. is g.f. for A034171(n-1).
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
SageMath
[9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Formula
3*a(n) = (9*n-6)(!^9) := Product_{j=1..n} (9*j-6) = 3^n*A007559(n).
E.g.f.: (-1+(1-9*x)^(-1/3))/3.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/3) * 9^n * Pochhammer(n, 1/3).
a(n) = (9*n-6)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144758(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/9^6)^(1/9)*(Gamma(1/3) - Gamma(1/3, 1/9)). (End)
Extensions
Terms a(15) onward added by G. C. Greubel, Oct 18 2022
A035017 One quarter of 9-factorial numbers.
1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Table[9^n*Pochhammer[4/9, n]/4, {n,40}] (* G. C. Greubel, Oct 18 2022 *)
-
SageMath
[9^n*rising_factorial(4/9,n)/4 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Formula
4*a(n) = (9*n-5)(!^9) := Product_{j=1..n} (9*j-5).
E.g.f.: (-1+(1-9*x)^(-4/9))/4.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/4) * 9^n * Pochhammer(n, 4/9).
a(n) = (9*n-5)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144829(n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/9^5)^(1/9)*(Gamma(4/9) - Gamma(4/9, 1/9)). (End)
A035018 One fifth of 9-factorial numbers.
1, 14, 322, 10304, 422464, 21123200, 1246268800, 84746278400, 6525463436800, 561189855564800, 53313036278656000, 5544555772980224000, 626534802346765312000, 76437245886305368064000, 10013279211106003216384000, 1401859089554840450293760000, 208877004343671227093770240000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Rest[FoldList[Times,1,9*Range[20]-4]/5] (* Harvey P. Dale, May 22 2013 *)
-
SageMath
[9^n*rising_factorial(5/9,n)/5 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Formula
5*a(n) = (9*n-4)(!^9) := Product_{j=1..n} (9*j-4).
E.g.f.: (-1+(1-9*x)^(-5/9))/5.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/5) * 9^n * Pochhammer(n, 5/9).
a(n) = (9*n-4)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147629(n+1)/5.
Sum_{n>=1} 1/a(n) = 5*(e/9^4)^(1/9)*(Gamma(5/9) - Gamma(5/9, 1/9)). (End)
A035020 One sixth of 9-factorial numbers.
1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
SageMath
[9^n*rising_factorial(2/3,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Formula
6*a(n) = (9*n-3)(!^9) := Product_{j=1..n} (9*j-3) = 3^n*2*A034000(n), where 2*A034000(n) = (3*n-1)(!^3) := Product_{j=1..n} (3*j-1).
E.g.f.: (-1+(1-9*x)^(-2/3))/6.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/6) * 9^n * Pochhammer(n, 2/3).
a(n) = (9*n - 3)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147630(n+1)/6.
Sum_{n>=1} 1/a(n) = 6*(e/9^3)^(1/9)*(Gamma(2/3) - Gamma(2/3, 1/9)). (End)
A035021 One seventh of 9-factorial numbers.
1, 16, 400, 13600, 584800, 30409600, 1854985600, 129848992000, 10258070368000, 902710192384000, 87562888661248000, 9281666198092288000, 1067391612780613120000, 132356559984796026880000, 17603422477977871575040000, 2499685991872857763655680000, 377452584772801522312007680000
Offset: 1
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
Maple
f := gfun:-rectoproc({(9*n - 2)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember); map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Mathematica
Table[9^n*Pochhammer[7/9, n]/7, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
SageMath
[9^n*rising_factorial(7/9,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
Formula
7*a(n) = (9*n-2)(!^9) := Product_{j=1..n} (9*j-2).
E.g.f.: (-1+(1-9*x)^(-7/9))/7.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 2)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/7) * 9^n * Pochhammer(n, 7/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147631(n+1)/7.
Sum_{n>=1} 1/a(n) = 7*(e/9^2)^(1/9)*(Gamma(7/9) - Gamma(7/9, 1/9)). (End)
Extensions
Terms a(15) onward added by G. C. Greubel, Oct 19 2022
A035024 Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.
1, 9, 405, 23085, 1454355, 96860043, 6683342967, 472607824095, 34027763334840, 2484026723443320, 183321172190117016, 13649094547609621464, 1023682091070721609800, 77248625487721376862600, 5859860019140007302005800, 446521333458468556412841960, 34158882009572844565582409940
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Armin Straub, Victor H. Moll, and Tewodros Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (1) (2009), 31-41, eq (1.10).
- Index entries for sequences related to factorial numbers.
Crossrefs
Programs
-
Magma
[n le 1 select 1 else 9*(9*n-17)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
Mathematica
CoefficientList[Series[1/Surd[1-81x,9],{x,0,20}],x] (* Harvey P. Dale, Mar 08 2018 *) Table[9^(2*n)*Pochhammer[1/9, n]/n!, {n,0,40}] (* G. C. Greubel, Oct 19 2022 *)
-
SageMath
[9^(2*n)*rising_factorial(1/9,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 19 2022
Formula
G.f.: (1-81*x)^(-1/9).
D-finite with recurrence: n*a(n) = 9*(9*n-8)*a(n-1). - R. J. Mathar, Jan 28 2020
a(n) = 9^(2*n) * Pochhammer(n, 1/9)/n!. - G. C. Greubel, Oct 19 2022
a(n) ~ 3^(4*n) * n^(-8/9) / Gamma(1/9). - Amiram Eldar, Aug 18 2025
Comments