cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004988 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 2).

Original entry on oeis.org

1, 6, 45, 360, 2970, 24948, 212058, 1817640, 15677145, 135868590, 1182056733, 10316131488, 90266150520, 791564704560, 6954461332920, 61199259729696, 539318476367946, 4758692438540700, 42035116540442850, 371678925199705200, 3289358488017391020
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 3^n*Product([0..n-1], k-> 3*k+2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+2: k in [0..n-1]]/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    A004988 := proc(n)
            binomial(-2/3,n)*(-9)^n ;
    end proc: # R. J. Mathar, Sep 16 2012
  • Mathematica
    Table[FullSimplify[9^n*Gamma[n+2/3]/(Gamma[2/3]*Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1-9x)^(-2/3), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    Table[9^n*Pochhammer[2/3, n]/n!, {n,0,20}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,3*k+2)*3^n/n!)
    
  • Sage
    [9^n*rising_factorial(2/3, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1-9*x)^(-2/3).
a(n) = 9^n*Gegenbauer_C(n,1/3,1). - Paul Barry, Apr 21 2009
a(n) = Product_{k=1..n} (9 - 3/k). - Michel Lagneau, Sep 16 2012
a(n) = (-9)^n*binomial(-2/3, n). - R. J. Mathar, Sep 16 2012
D-finite with recurrence: n*a(n) +3*(-3*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = 9^n * Gamma(n+2/3) / (Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 9/8 + sqrt(3)*Pi/32 - 3*log(3)/32. - Amiram Eldar, Dec 02 2022
Representation as the n-th moment of a positive function on (0, 9): a(n) = Integral_{x = 0..9} x^n * w(x) dx, n >= 0, where w(x) = sqrt(3)/(2*Pi) * 1/(x*(9 - x)^2)^(1/3). The weight function w(x) is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. Cf. A004987. - Peter Bala, Oct 13 2024
a(n) ~ c * 9^n / n^(1/3), where c = 1/Gamma(2/3) = 1/A073006 = 0.738488... . - Amiram Eldar, Aug 17 2025

A025748 3rd-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0

Views

Author

Keywords

Comments

G.f. (with a(0)=0) is series reversion of x - 3*x^2 + 3*x^3.
The Hankel transform of a(n) is A005130(n) * 3^binomial(n,2).

Crossrefs

Apart from the initial 1, identical to A097188.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    A025748 :=proc(n)
            local x;
            coeftayl(4-(1-9*x)^(1/3),x=0,n) ;
            %/3 ;
    end proc: # R. J. Mathar, Nov 01 2012
  • Mathematica
    CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *)
    Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
    a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
  • PARI
    a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
    
  • Sage
    def A025748_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((4 - (1-9*x)^(1/3))/3).list()
    A025748_list(25) # G. C. Greubel, Sep 17 2019

Formula

From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) + 3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
For n >= 1, a(n) = Integral_{x = 0..9} x^n * w(x) dx, where w(x) = 1/(2*sqrt(3)*Pi) * x^(2/3)*(9 - x)^(1/3)/x^2. - Peter Bala, Oct 14 2024
a(n) ~ 9^(n-1) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025

A004990 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k - 1).

Original entry on oeis.org

1, -3, -9, -45, -270, -1782, -12474, -90882, -681615, -5225715, -40760577, -322379109, -2579032872, -20830650120, -169621008120, -1390892266584, -11474861199318, -95173848770814, -793115406423450, -6637123664280450, -55751838779955780
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 3^n*Product([0..n-1], k-> 3*k-1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k-1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k-1, k=0..n-1): seq(a(n), n=0..20); # G. C. Greubel, Aug 22 2019
  • Mathematica
    FullSimplify[Table[3^(2*n) * Gamma[n-1/3] / (n! * Gamma[-1/3]),{n,0,20}]] (* Vaclav Kotesovec, Dec 03 2014 *)
  • PARI
    for(n=0,30,print1( (3^n/n!)*prod(k=0,n-1,(3*k-1) ),","))
    
  • Sage
    [9^n*rising_factorial(-1/3, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) = 9*A034164(n-2), n >= 2.
G.f.: (1 - 9*x)^(1/3).
a(n) ~ -1/3*Gamma(2/3)^-1*n^(-4/3)*3^(2*n)*{1 + 2/9*n^-1 + ...}.
G.f.: 1 + 3*x/(G(0)-3*x) where G(k) = (1+9*x)*k + 1 - 3*x - 3*x*(k+1)*(3*k+2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 07 2012
D-finite with recurrence: n*a(n) +3*(-3*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 9/16 - sqrt(3)*Pi/64 + 3*log(3)/64. - Amiram Eldar, Dec 02 2022
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-9)^n*binomial(1/3, n).
E.g.f.: hypergeom([-1/3], [1], 9*x).
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(1/3, k)* binomial(1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004989.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 5)*(3*k - 4). (End)

Extensions

More terms from Jason Earls, Dec 03 2001

A248324 Square array read by antidiagonals downwards: super Patalan numbers of order 3.

Original entry on oeis.org

1, 3, 6, 18, 9, 45, 126, 36, 45, 360, 945, 189, 135, 270, 2970, 7371, 1134, 567, 648, 1782, 24948, 58968, 7371, 2835, 2268, 3564, 12474, 212058, 480168, 50544, 15795, 9720, 10692, 21384, 90882, 1817640, 3961386, 360126, 94770, 47385, 40095, 56133, 136323, 681615, 15677145, 33011550, 2640924, 600210, 252720, 173745, 187110, 318087, 908820, 5225715, 135868590
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 3, A097188.

Examples

			T(0..4,0..4) is:
  1    3    18   126   945
  6    9    36   189   1134
  45   45   135  567   2835
  360  270  648  2268  9720
  2970 1782 3564 10692 40095
		

Crossrefs

Cf. A068555, A248325. First column is A004988, first row is A004987. a(n,1) = -A004990(n+1) = 3*A097188(n). a(1,k) = -A004989(k+1).

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(9*n-3)/(n+k), T(n,k) = T(n,k-1)*(9*k-6)/(n+k).
G.f.: (x/(1-9*x)^(2/3)+y/(1-9*y)^(1/3))/(x+y-9*x*y).

A004991 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 4).

Original entry on oeis.org

1, 12, 126, 1260, 12285, 117936, 1120392, 10563696, 99034650, 924323400, 8596207620, 79710288840, 737320171770, 6806032354800, 62712726697800, 576957085619760, 5300793224131545, 48642573115560060, 445890253559300550, 4083416006279910300, 37363256457461179245, 341606916182502210240
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+4)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k+4: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k+4, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[4/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+4,{k,0,n-1}],{n,0,30}] (* or *) CoefficientList[ Series[ 1/Surd[(1-9x)^4,3],{x,0,30}],x] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+4)/n!;
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(4/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-4/3).
a(n) ~ 3*Gamma(1/3)^-1*n^(1/3)*3^(2*n)*(1 + 2/9*n^-1 - ...).
a(n) = (3^(2*n))/(Integral_{x=0..1} (1-x^3)^n dx). - Al Hakanson (hawkuu(AT)excite.com), Dec 04 2003
D-finite with recurrence: n*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 + 3*log(3)/8. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019

A004992 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).

Original entry on oeis.org

1, 15, 180, 1980, 20790, 212058, 2120580, 20902860, 203802885, 1970094555, 18912907728, 180532301040, 1715056859880, 16227076443480, 152998149324240, 1438182603647856, 13482961909198650, 126105349621328550, 1176983263132399800, 10964528293391303400, 101970113128539121620
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+5)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+5, k=0..n-1): seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[5/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+5,{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+5)/n!;
    vector(25, n, a(n-1)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(5/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-5/3).
a(n) ~ (3/2)*Gamma(2/3)^-1*n^(2/3)*3^(2*n)*(1 + (5/9)*n^-1 - ...).
D-finite with recurrence: n*a(n) +3*(-3*n-2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/2 - 3*log(3)/2. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019

A386415 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^4)^(2/3).

Original entry on oeis.org

1, 6, 135, 4140, 146475, 5629338, 228355281, 9622693080, 417122726490, 18480617374050, 833136935399208, 38094723501749460, 1762459398803643930, 82353342267057244950, 3880848811889775489300, 184228926273804535479216, 8801795826996054546077865, 422898288144162288398536860
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Maple
    A386415 := proc(n)
        9^n*binomial((8*n+2)/3,n)/(4*n+1) ;
    end proc:
    seq(A386415(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • Mathematica
    A386415[n_] := 9^n * Binomial[(8*n + 2)/3, n]/(4*n + 1);
    Array[A386415, 20, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 8/3, 2/3);

Formula

a(n) = 9^n * binomial((8*n+2)/3,n)/(4*n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A386416.
D-finite with recurrence 5*n*(n-1)*(n-2)*(5*n-4)*(5*n+2)*(5*n-7)*(5*n-1)*a(n) -3456*(4*n-11)*(8*n-19)*(8*n-13)*(4*n-5)*(8*n-7)*(2*n-1)*(8*n-1)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386413 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^2)^(2/3).

Original entry on oeis.org

1, 6, 63, 792, 10935, 160056, 2438667, 38263752, 614014830, 10029572280, 166203389781, 2787232297680, 47213065271268, 806618756189736, 13883029872725475, 240491818267745760, 4189678646994012501, 73357895462268102840, 1290223574267814268290, 22784365638084466567800
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386413[n_] := 9^n*Binomial[(4*n + 2)/3, n]/(2*n + 1);
    Array[A386413, 25, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 4/3, 2/3);

Formula

a(n) = 9^n * binomial((4*n+2)/3,n)/(2*n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A078532.
D-finite with recurrence n*(n-2)*(n+2)*a(n) -216*(2*n-5)*(4*n-7)*(4*n-1)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386414 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^3)^(2/3).

Original entry on oeis.org

1, 6, 99, 2142, 52785, 1404702, 39331656, 1141839504, 34057559052, 1037385419400, 32133013365915, 1009060082062110, 32050934711814915, 1027914968037080970, 33240367148212098900, 1082645830435810233960, 35483717092533680418039, 1169426742892003447650666
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386414[n_] := 9^n*Binomial[(6*n + 2)/3, n]/(3*n + 1);
    Array[A386414, 20, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 2, 2/3);

Formula

a(n) = 9^n * binomial((6*n+2)/3,n)/(3*n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A008931.
D-finite with recurrence +n*(3*n+2)*a(n) -6*(6*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Jul 30 2025
G.f.: 2F1(1/3,5/6 ; 5/3 ; 36*x). - R. J. Mathar, Jul 30 2025

A380030 Expansion of e.g.f. (1 - 3*x*exp(x))^(2/3).

Original entry on oeis.org

1, -2, -6, -26, -208, -2570, -42332, -865718, -21110224, -597416786, -19239912340, -694646155742, -27785653906232, -1219574936748506, -58274685177526300, -3011159013528002150, -167299112903683007392, -9945379044947061586850, -629870278061691615041828
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-3)^k*k^(n-k)*binomial(2/3, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (-3)^k * k^(n-k) * binomial(2/3,k)/(n-k)!.
Showing 1-10 of 10 results.