cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A004987 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). 3-central binomial coefficients.

Original entry on oeis.org

1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Diagonal of rational function R(x,y) = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y). - Gheorghe Coserea, Jul 01 2016
This is the k = 3 variant of the k-central binomial coefficients c(n,k) with g.f. (1 - k^2*x)^(-1/k), which yield the usual central binomial coefficients A001405 for k = 2. - M. F. Hasler, Nov 12 2024

Examples

			G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
  • PARI
    a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
    
  • PARI
    my(x='x, y='y);
    R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y])  \\ Gheorghe Coserea, Jul 01 2016
    
  • PARI
    Vec((1-9*x+O(x^25))^(-1/3)) \\ yields the same as:
    apply( {A004987(n)=prod(k=0, n-1, 9*k+3)\n!}, [0..24]) \\ M. F. Hasler, Nov 12 2024
    
  • Sage
    [9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-1/3).
a(n) = (3^n/n!)*A007559(n), n >= 1, a(0) := 1.
a(n) ~ Gamma(1/3)^-1*n^(-2/3)*3^(2*n)*{1 - 1/9*n^-1 + ...}.
Representation as n-th moment of a positive function on (0, 9): a(n) = Integral_{x=0..9} ( x^n*(1/(Pi*sqrt(3)*6*(x/9)^(2/3)*(1-x/9)^(1/3))) ), n >= 0. This function is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. - Karol A. Penson, Jan 30 2003
D-finite with recurrence: n*a(n) + 3*(2-3*n)*a(n-1)=0. - R. J. Mathar, Jun 07 2013
0 = a(n) * (81*a(n+1) - 15*a(n+2)) + a(n+1) * (-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
G.f. A(x)=:y satisfies 0 = y'' * y - 4 * y' * y'. - Michael Somos, Jan 27 2014
a(n) = (-9)^n*binomial(-1/3, n). - Peter Luschny, Mar 23 2014
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/3], [1], 9*x). - Karol A. Penson, Dec 19 2015
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*(12 + log(3)))/32 = 1.3980385924595932... - Ilya Gutkovskiy, Jul 01 2016
Binomial transform of A216316. - Peter Bala, Jul 02 2023
From Peter Bala, Mar 31 2024: (Start)
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/3, k)* binomial(-1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004988(n).
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 1)*(3*k - 2). (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^3). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Ralf Stephan, Mar 13 2004
More terms from Benoit Cloitre, Jun 05 2004

A004990 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k - 1).

Original entry on oeis.org

1, -3, -9, -45, -270, -1782, -12474, -90882, -681615, -5225715, -40760577, -322379109, -2579032872, -20830650120, -169621008120, -1390892266584, -11474861199318, -95173848770814, -793115406423450, -6637123664280450, -55751838779955780
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 3^n*Product([0..n-1], k-> 3*k-1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k-1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k-1, k=0..n-1): seq(a(n), n=0..20); # G. C. Greubel, Aug 22 2019
  • Mathematica
    FullSimplify[Table[3^(2*n) * Gamma[n-1/3] / (n! * Gamma[-1/3]),{n,0,20}]] (* Vaclav Kotesovec, Dec 03 2014 *)
  • PARI
    for(n=0,30,print1( (3^n/n!)*prod(k=0,n-1,(3*k-1) ),","))
    
  • Sage
    [9^n*rising_factorial(-1/3, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) = 9*A034164(n-2), n >= 2.
G.f.: (1 - 9*x)^(1/3).
a(n) ~ -1/3*Gamma(2/3)^-1*n^(-4/3)*3^(2*n)*{1 + 2/9*n^-1 + ...}.
G.f.: 1 + 3*x/(G(0)-3*x) where G(k) = (1+9*x)*k + 1 - 3*x - 3*x*(k+1)*(3*k+2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 07 2012
D-finite with recurrence: n*a(n) +3*(-3*n+4)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 9/16 - sqrt(3)*Pi/64 + 3*log(3)/64. - Amiram Eldar, Dec 02 2022
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-9)^n*binomial(1/3, n).
E.g.f.: hypergeom([-1/3], [1], 9*x).
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(1/3, k)* binomial(1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004989.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 5)*(3*k - 4). (End)

Extensions

More terms from Jason Earls, Dec 03 2001

A097188 G.f. A(x) satisfies A057083(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097186.

Original entry on oeis.org

1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Essentially identical to A025748.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 - (1-9*x)^(1/3))/(3*x) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-(1-9*x)^(1/3))/(3*x), x, n+2), x, n), n = 0..25); # G. C. Greubel, Sep 17 2019
  • Mathematica
    Table[FullSimplify[9^n * Gamma[n+2/3] / ((n+1) * Gamma[2/3] * Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1-(1 - 9 x)^(1/3))/(3 x), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2014 *)
  • PARI
    a(n)=polcoeff((1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x),n,x)
    
  • Sage
    def A097188_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1 - (1-9*x)^(1/3))/(3*x)).list()
    A097188_list(25) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = (1 - (1-9*x)^(1/3))/(3*x).
G.f.: A(x) = (1/x)*(series reversion of x/A057083(x)).
a(n) = A004988(n)/(n+1).
a(n) = A025748(n+1).
a(n) = 3*A034164(n-1) for n>=1.
x*A(x) is the compositional inverse of x-3*x^2+3*x^3. - Ira M. Gessel, Feb 18 2012
a(n) = 1/(n+1) * Sum_{k=1..n} binomial(k,n-k) * 3^(k)*(-1)^(n-k) * binomial(n+k,n), if n>0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 9^n * Gamma(n+2/3) / ((n+1) * Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 21/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022

A004989 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).

Original entry on oeis.org

1, -6, -9, -36, -189, -1134, -7371, -50544, -360126, -2640924, -19806930, -151252920, -1172210130, -9197341020, -72921775230, -583374201840, -4703454502335, -38180983607190, -311811366125385, -2560135427134740, -21121117273861605, -175003543126281870, -1455711290550435555
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k-2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k-2: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k-2, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[-2/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,3*k-2)*3^n/n!)
    
  • Sage
    [9^n*rising_factorial(-2/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) ~ -(2/3)*Gamma(1/3)^-1*n^(-5/3)*3^(2*n)*(1 + (5/9)*n^-1 + ...).
G.f.: (1-9*x)^(2/3).
D-finite with recurrence: n*a(n) +3*(-3*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 99/128 - 5*sqrt(3)*Pi/512 - 15*log(3)/512. - Amiram Eldar, Dec 02 2022
From Peter Bala, Oct 14 2024: (Start)
a(n) = -1/(sqrt(3)*Pi) * 9^n * Gamma(2/3)*Gamma(n-2/3)/Gamma(n+1).
For n >= 1, a(n) = - Integral_{x = 0..9} x^n * w(x) dx, where w(x) = sqrt(3)/(2*Pi) * x^(1/3)*(9 - x)^(2/3)/x^2. (End)

A216702 a(n) = Product_{k=1..n} (16 - 4/k).

Original entry on oeis.org

1, 12, 168, 2464, 36960, 561792, 8614144, 132903936, 2060011008, 32044615680, 499896004608, 7816555708416, 122459372765184, 1921670157238272, 30197673899458560, 475110069351481344, 7482983592285831168, 117967035454858985472, 1861257670509997326336
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(16-4/k, k=1.. n), n=0..20);
    seq((4^n/n!)*product(4*k+3, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[16-4/k,{k,n}],{n,0,20}] (* or *) CoefficientList[ Series[ 1/(1-16*x)^(3/4),{x,0,20}],x] (* Harvey P. Dale, Sep 19 2012 *)

Formula

G.f.: 1/(1-16*x)^(3/4). - Harvey P. Dale, Sep 19 2012
From Peter Bala, Sep 24 2023: (Start)
a(n) = 16^n * binomial(n - 1/4, n).
P-recursive: a(n) = 4*(4*n - 1)/n * a(n-1) with a(0) = 1. (End)
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n * binomial(-3/4, n).
a(n) ~ 1/Gamma(3/4) * 16^n/n^(1/4).
E.g.f.: hypergeom([3/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-3/4, k)* binomial(-3/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (16^n)/(2*n)! * Product_{k = 1..n} (4*k^2 - 1) = (16^n)/(2*n)! * A079484(n). (End)

A216703 a(n) = Product_{k=1..n} (49 - 7/k).

Original entry on oeis.org

1, 42, 1911, 89180, 4213755, 200574738, 9594158301, 460519598448, 22162505675310, 1068725273676060, 51619430718553698, 2496503376570051576, 120872371815599997138, 5857661095679076784380, 284096563140435224042430, 13788153197749122873525936
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(49-7/k, k=1.. n), n=0..20);
    seq((7^n/n!)*product(7*k+6, k=0.. n-1), n=0..20);
  • Mathematica
    Table[49^n * Pochhammer[6/7, n] / n!, {n, 0, 15}] (* Amiram Eldar, Aug 17 2025 *)

Formula

From Seiichi Manyama, Jul 17 2025: (Start)
G.f.: 1/(1 - 49*x)^(6/7).
a(n) = (-49)^n * binomial(-6/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+6). (End)
From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 49^n * Gamma(n+6/7) / (Gamma(6/7) * Gamma(n+1)).
a(n) ~ c * 49^n / n^(1/7), where c = 1/Gamma(6/7) = 1/A220607 = 0.904349... . (End)

A216704 a(n) = Product_{k=1..n} (64 - 8/k).

Original entry on oeis.org

1, 56, 3360, 206080, 12776960, 797282304, 49963024384, 3140532961280, 197853576560640, 12486759054049280, 789163172215914496, 49932506169297862656, 3162392057388864634880, 200447004252955727626240, 12714067126901763295150080, 806919460320698577132191744
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(64-8/k, k=1.. n), n=0..20);
    seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[64-8/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Sep 23 2017 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 64^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+1)).
a(n) ~ c * 64^n / n^(1/8), where c = 1/Gamma(7/8) = 1/A203146 = 0.917723... . (End)

A248324 Square array read by antidiagonals downwards: super Patalan numbers of order 3.

Original entry on oeis.org

1, 3, 6, 18, 9, 45, 126, 36, 45, 360, 945, 189, 135, 270, 2970, 7371, 1134, 567, 648, 1782, 24948, 58968, 7371, 2835, 2268, 3564, 12474, 212058, 480168, 50544, 15795, 9720, 10692, 21384, 90882, 1817640, 3961386, 360126, 94770, 47385, 40095, 56133, 136323, 681615, 15677145, 33011550, 2640924, 600210, 252720, 173745, 187110, 318087, 908820, 5225715, 135868590
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 3, A097188.

Examples

			T(0..4,0..4) is:
  1    3    18   126   945
  6    9    36   189   1134
  45   45   135  567   2835
  360  270  648  2268  9720
  2970 1782 3564 10692 40095
		

Crossrefs

Cf. A068555, A248325. First column is A004988, first row is A004987. a(n,1) = -A004990(n+1) = 3*A097188(n). a(1,k) = -A004989(k+1).

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(9*n-3)/(n+k), T(n,k) = T(n,k-1)*(9*k-6)/(n+k).
G.f.: (x/(1-9*x)^(2/3)+y/(1-9*y)^(1/3))/(x+y-9*x*y).

A004991 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 4).

Original entry on oeis.org

1, 12, 126, 1260, 12285, 117936, 1120392, 10563696, 99034650, 924323400, 8596207620, 79710288840, 737320171770, 6806032354800, 62712726697800, 576957085619760, 5300793224131545, 48642573115560060, 445890253559300550, 4083416006279910300, 37363256457461179245, 341606916182502210240
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+4)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k+4: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k+4, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[4/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+4,{k,0,n-1}],{n,0,30}] (* or *) CoefficientList[ Series[ 1/Surd[(1-9x)^4,3],{x,0,30}],x] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+4)/n!;
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(4/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-4/3).
a(n) ~ 3*Gamma(1/3)^-1*n^(1/3)*3^(2*n)*(1 + 2/9*n^-1 - ...).
a(n) = (3^(2*n))/(Integral_{x=0..1} (1-x^3)^n dx). - Al Hakanson (hawkuu(AT)excite.com), Dec 04 2003
D-finite with recurrence: n*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 + 3*log(3)/8. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019

A004992 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).

Original entry on oeis.org

1, 15, 180, 1980, 20790, 212058, 2120580, 20902860, 203802885, 1970094555, 18912907728, 180532301040, 1715056859880, 16227076443480, 152998149324240, 1438182603647856, 13482961909198650, 126105349621328550, 1176983263132399800, 10964528293391303400, 101970113128539121620
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+5)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+5, k=0..n-1): seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[5/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+5,{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+5)/n!;
    vector(25, n, a(n-1)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(5/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-5/3).
a(n) ~ (3/2)*Gamma(2/3)^-1*n^(2/3)*3^(2*n)*(1 + (5/9)*n^-1 - ...).
D-finite with recurrence: n*a(n) +3*(-3*n-2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/2 - 3*log(3)/2. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019
Showing 1-10 of 21 results. Next