cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A004988 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 2).

Original entry on oeis.org

1, 6, 45, 360, 2970, 24948, 212058, 1817640, 15677145, 135868590, 1182056733, 10316131488, 90266150520, 791564704560, 6954461332920, 61199259729696, 539318476367946, 4758692438540700, 42035116540442850, 371678925199705200, 3289358488017391020
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 3^n*Product([0..n-1], k-> 3*k+2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+2: k in [0..n-1]]/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    A004988 := proc(n)
            binomial(-2/3,n)*(-9)^n ;
    end proc: # R. J. Mathar, Sep 16 2012
  • Mathematica
    Table[FullSimplify[9^n*Gamma[n+2/3]/(Gamma[2/3]*Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1-9x)^(-2/3), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    Table[9^n*Pochhammer[2/3, n]/n!, {n,0,20}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,3*k+2)*3^n/n!)
    
  • Sage
    [9^n*rising_factorial(2/3, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1-9*x)^(-2/3).
a(n) = 9^n*Gegenbauer_C(n,1/3,1). - Paul Barry, Apr 21 2009
a(n) = Product_{k=1..n} (9 - 3/k). - Michel Lagneau, Sep 16 2012
a(n) = (-9)^n*binomial(-2/3, n). - R. J. Mathar, Sep 16 2012
D-finite with recurrence: n*a(n) +3*(-3*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = 9^n * Gamma(n+2/3) / (Gamma(2/3) * Gamma(n+1)). - Vaclav Kotesovec, Feb 09 2014
Sum_{n>=0} 1/a(n) = 9/8 + sqrt(3)*Pi/32 - 3*log(3)/32. - Amiram Eldar, Dec 02 2022
Representation as the n-th moment of a positive function on (0, 9): a(n) = Integral_{x = 0..9} x^n * w(x) dx, n >= 0, where w(x) = sqrt(3)/(2*Pi) * 1/(x*(9 - x)^2)^(1/3). The weight function w(x) is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. Cf. A004987. - Peter Bala, Oct 13 2024
a(n) ~ c * 9^n / n^(1/3), where c = 1/Gamma(2/3) = 1/A073006 = 0.738488... . - Amiram Eldar, Aug 17 2025

A078532 Coefficients of power series that satisfies A(x)^3 - 9*x*A(x)^4 = 1, A(0)=1.

Original entry on oeis.org

1, 3, 27, 315, 4158, 59049, 880308, 13586859, 215233605, 3479417370, 57168561996, 951892141473, 16026585711660, 272383068872700, 4666865660812044, 80521573261807755, 1397858693681272230, 24398716826612190447, 427921056863230599900, 7537621933880388620010
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2002

Keywords

Comments

If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2) (conjecture).
If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(k)=n^(2k)*binomial(k/n+1/n+k-1,k)/(k+1) and, consequently, a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2). - Emeric Deutsch, Dec 10 2002
A generalization of the Catalan sequence (A000108) since for n = 1 the equation A(x)^n -(n^2)*x*A(x)^(n+1) = 1 reduces to A(x)=1+xA(x)^2. - Emeric Deutsch, Dec 10 2002
Radius of convergence of g.f. A(x) is r = 1/(3*4^(4/3)) where A(r) = 4^(1/3). - Paul D. Hanna, Jul 24 2012
Self-convolution cube yields A214668.

Examples

			A(x)^3 - 9x*A(x)^4 = 1 since A(x)^3 = 1 +9x +108x^2 +1458x^3 +21060x^4 +... and A(x)^4 = 1 +12x +162x^2 +2340x^3 +... also a(2)=3^3, a(5)=3^10.
		

Crossrefs

Programs

  • Mathematica
    Table[3^(2n) Binomial[(4n-2)/3,n]/(n+1),{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
  • PARI
    for(n=0,25, print1(9^n * binomial((4*n-2)/3, n)/(n+1), ", ")) \\ G. C. Greubel, Jan 26 2017

Formula

a(n) = 3^(2n)*binomial(4n/3-2/3, n)/(n+1). - Emeric Deutsch, Dec 10 2002
Sequence with offset 1 is expansion of reversion of g.f. x*(1-9*x)^(1/3), which equals x times the g.f. of A004990.
a(n) ~ 2^(8*n/3-5/6) * 3^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 03 2014
D-finite with recurrence n*(n-1)*(n+1)*a(n) -216*(4*n-5)*(2*n-1)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Harvey P. Dale, Nov 03 2011

A004989 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k - 2).

Original entry on oeis.org

1, -6, -9, -36, -189, -1134, -7371, -50544, -360126, -2640924, -19806930, -151252920, -1172210130, -9197341020, -72921775230, -583374201840, -4703454502335, -38180983607190, -311811366125385, -2560135427134740, -21121117273861605, -175003543126281870, -1455711290550435555
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k-2)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k-2: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k-2, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[-2/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    a(n)=if(n<0,0,prod(k=0,n-1,3*k-2)*3^n/n!)
    
  • Sage
    [9^n*rising_factorial(-2/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) ~ -(2/3)*Gamma(1/3)^-1*n^(-5/3)*3^(2*n)*(1 + (5/9)*n^-1 + ...).
G.f.: (1-9*x)^(2/3).
D-finite with recurrence: n*a(n) +3*(-3*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 99/128 - 5*sqrt(3)*Pi/512 - 15*log(3)/512. - Amiram Eldar, Dec 02 2022
From Peter Bala, Oct 14 2024: (Start)
a(n) = -1/(sqrt(3)*Pi) * 9^n * Gamma(2/3)*Gamma(n-2/3)/Gamma(n+1).
For n >= 1, a(n) = - Integral_{x = 0..9} x^n * w(x) dx, where w(x) = sqrt(3)/(2*Pi) * x^(1/3)*(9 - x)^(2/3)/x^2. (End)

A034164 Related to triple factorial numbers 2*A034000(n+1).

Original entry on oeis.org

1, 5, 30, 198, 1386, 10098, 75735, 580635, 4528953, 35819901, 286559208, 2314516680, 18846778680, 154543585176, 1274984577702, 10574872085646, 88123934047050, 737458184920050, 6194648753328420, 52212039492339540, 441429061162507020, 3742550735942994300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 -3*x -(1-9*x)^(1/3))/(3*x)^2 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-3*x-(1-9*x)^(1/3))/(3*x)^2, x, n+2), x, n), n = 0..32); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[ HypergeometricPFQ[{1, 5/3}, {3}, 9 x], {x, 0, 20}], x]
    Table[FullSimplify[3^(2*n+1) * Gamma[n+5/3] / ((n+2) * Gamma[2/3] * Gamma[n+2])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1 -3x -(1-9 x)^(1/3))/(3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((1 -3*x -(1-9*x)^(1/3))/(3*x)^2) \\ G. C. Greubel, Sep 17 2019
    
  • Sage
    def A034164_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1 -3*x -(1-9*x)^(1/3))/(3*x)^2).list()
    A034164_list(30) # G. C. Greubel, Sep 17 2019

Formula

a(n) = 3^n*(3*n+2)!!!/(n+2)!, where (3*n+2)!!! = 2*A034000(n+1).
G.f.: (1 - 3*x - (1-9*x)^(1/3))/(3*x)^2.
G.f.: 2F1( (1, 5/3); 3; 9 x ). - Olivier Gérard, Feb 15 2011
D-finite with recurrence: (n+2)*a(n) - 3*(3*n+2)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012
a(n) = 3^(2*n+1) * Gamma(n+5/3) / ((n+2) * Gamma(2/3) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
Integral representation as the n-th moment of a positive function on (0,9): a(n) = Integral_{x=0..9} x^n*W(x) dx, n >= 0, where W(x) = (1/18)*9^(1/3)*sqrt(3)*x^(2/3)*(1-x/9)^(1/3)/Pi. This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson, Nov 07 2015
Sum_{n>=0} 1/a(n) = 15/16 + (27/64)*(Pi*sqrt(3)/3 - log(3)). - Amiram Eldar, Dec 02 2022
a(n) ~ 3^(2*n+1) * n^(-4/3) / Gamma(2/3). - Amiram Eldar, Aug 19 2025

A248324 Square array read by antidiagonals downwards: super Patalan numbers of order 3.

Original entry on oeis.org

1, 3, 6, 18, 9, 45, 126, 36, 45, 360, 945, 189, 135, 270, 2970, 7371, 1134, 567, 648, 1782, 24948, 58968, 7371, 2835, 2268, 3564, 12474, 212058, 480168, 50544, 15795, 9720, 10692, 21384, 90882, 1817640, 3961386, 360126, 94770, 47385, 40095, 56133, 136323, 681615, 15677145, 33011550, 2640924, 600210, 252720, 173745, 187110, 318087, 908820, 5225715, 135868590
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 3, A097188.

Examples

			T(0..4,0..4) is:
  1    3    18   126   945
  6    9    36   189   1134
  45   45   135  567   2835
  360  270  648  2268  9720
  2970 1782 3564 10692 40095
		

Crossrefs

Cf. A068555, A248325. First column is A004988, first row is A004987. a(n,1) = -A004990(n+1) = 3*A097188(n). a(1,k) = -A004989(k+1).

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(9*n-3)/(n+k), T(n,k) = T(n,k-1)*(9*k-6)/(n+k).
G.f.: (x/(1-9*x)^(2/3)+y/(1-9*y)^(1/3))/(x+y-9*x*y).

A004991 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 4).

Original entry on oeis.org

1, 12, 126, 1260, 12285, 117936, 1120392, 10563696, 99034650, 924323400, 8596207620, 79710288840, 737320171770, 6806032354800, 62712726697800, 576957085619760, 5300793224131545, 48642573115560060, 445890253559300550, 4083416006279910300, 37363256457461179245, 341606916182502210240
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+4)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*(&*[3*k+4: k in [0..n-1]])/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*product(3*k+4, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[4/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+4,{k,0,n-1}],{n,0,30}] (* or *) CoefficientList[ Series[ 1/Surd[(1-9x)^4,3],{x,0,30}],x] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+4)/n!;
    vector(25, n, n--; a(n)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(4/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-4/3).
a(n) ~ 3*Gamma(1/3)^-1*n^(1/3)*3^(2*n)*(1 + 2/9*n^-1 - ...).
a(n) = (3^(2*n))/(Integral_{x=0..1} (1-x^3)^n dx). - Al Hakanson (hawkuu(AT)excite.com), Dec 04 2003
D-finite with recurrence: n*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 + 3*log(3)/8. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019

A004992 a(n) = (3^n/n!) * Product_{k=0..n-1} (3*k + 5).

Original entry on oeis.org

1, 15, 180, 1980, 20790, 212058, 2120580, 20902860, 203802885, 1970094555, 18912907728, 180532301040, 1715056859880, 16227076443480, 152998149324240, 1438182603647856, 13482961909198650, 126105349621328550, 1176983263132399800, 10964528293391303400, 101970113128539121620
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+5)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+5, k=0..n-1): seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[9^n*Pochhammer[5/3, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
    Table[3^n/n! Product[3k+5,{k,0,n-1}],{n,0,20}] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    a(n) = 3^n*prod(k=0,n-1, 3*k+5)/n!;
    vector(25, n, a(n-1)) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    [9^n*rising_factorial(5/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-5/3).
a(n) ~ (3/2)*Gamma(2/3)^-1*n^(2/3)*3^(2*n)*(1 + (5/9)*n^-1 - ...).
D-finite with recurrence: n*a(n) +3*(-3*n-2)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/2 - 3*log(3)/2. - Amiram Eldar, Dec 02 2022

Extensions

Terms a(16) onward added by G. C. Greubel, Aug 22 2019

A067622 Consider the power series (x + 1)^(1/3) = 1 + x/3-x^2/9 + 5x^3/81 + ...; sequence gives numerators of coefficients.

Original entry on oeis.org

1, 1, -1, 5, -10, 22, -154, 374, -935, 21505, -55913, 147407, -1179256, 3174920, -8617640, 70664648, -194327782, 537259162, -13431479050, 37466757350, -104906920580, 884215473460, -2491879970660, 7042269482300, -59859290599550
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2002

Keywords

Comments

a(n) is also the numerator of the binomial coefficient C(k,n) evaluated at k=1/3, e.g. a(4) = (1/24)k(k-1)(k-2)(k-3), plug in k=1/3 and take numerator. - James R. Buddenhagen, Aug 16 2014

Crossrefs

Denominators are A067623.

Programs

  • Maple
    s := convert(taylor((x+1)^(1/3), x, 50), polynom): for n from 0 to 50 do printf(`%a,`, abs(numer(coeff(s, x, n)))) od;
    seq(numer(subs(k=1/3,expand(binomial(k,n)))),n=0..50) # James R. Buddenhagen, Aug 16 2014

Formula

a(n) =(-1)^n*A004990(n)*A067623(n)/A000244(n); ignoring signs, a(n) =A038502(A004990(n)) =A038502(A034164(n-2)). a(n)'s sign is (-1)^(n+1) if n>0.

Extensions

Edited by Henry Bottomley and James Sellers, Feb 11 2002

A301271 Expansion of (1-16*x)^(1/8).

Original entry on oeis.org

1, -2, -14, -140, -1610, -19964, -259532, -3485144, -47920730, -670890220, -9526641124, -136837208872, -1984139528644, -28998962341720, -426699017313880, -6315145456245424, -93937788661650682, -1403541077650545484, -21053116164758182260, -316904801216886322440
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2018

Keywords

Crossrefs

(1-b*x)^(1/A003557(b)): A002420 (b=4), A004984 (b=8), A004990 (b=9), (-1)^n * A108735 (b=12), this sequence (b=16), (-1)^n * A108733 (b=18), A049393 (b=25), A004996 (b=36), A303007 (b=240), A303055 (b=504), A305886 (b=1728).

Programs

  • PARI
    N=20; x='x+O('x^N); Vec((1-16*x)^(1/8))

Formula

a(n) = 2^n/n! * Product_{k=0..n-1} (8*k - 1) for n > 0.
a(n) = -sqrt(2-sqrt(2)) * Gamma(1/8) * Gamma(n-1/8) * 16^(n-1) / (Pi*Gamma(n+1)). - Vaclav Kotesovec, Jun 16 2018
a(n) ~ -2^(4*n-3) / (Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Jun 16 2018
D-finite with recurrence: n*a(n) +2*(-8*n+9)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
a(n) = -2*A097184(n-1). - R. J. Mathar, Jan 20 2020

A303007 Expansion of (1-240*x)^(1/8).

Original entry on oeis.org

1, -30, -3150, -472500, -81506250, -15160162500, -2956231687500, -595469525625000, -122815589660156250, -25791273828632812500, -5493541325498789062500, -1183608449221102734375000, -257434837705589844726562500, -56437637496994696728515625000
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2018

Keywords

Crossrefs

(1-b*x)^(1/A003557(b)): A002420 (b=4), A004984 (b=8), A004990 (b=9), (-1)^n * A108735 (b=12), A301271 (b=16), (-1)^n * A108733 (b=18), A049393 (b=25), A004996 (b=36), this sequence (b=240), A303055 (b=504), A305886 (b=1728).

Programs

  • Mathematica
    CoefficientList[Series[Surd[1-240x,8],{x,0,20}],x] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    N=20; x='x+O('x^N); Vec((1-240*x)^(1/8))

Formula

a(n) = 30^n/n! * Product_{k=0..n-1} (8*k - 1) for n > 0.
a(n) = 15^n * A301271(n).
a(n) ~ -2^(4*n - 3) * 15^n / (Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Jun 16 2018
D-finite with recurrence: n*a(n) +30*(-8*n+9)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
Showing 1-10 of 13 results. Next