A025748
3rd-order Patalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005, eq. (5.1).
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Apart from the initial 1, identical to
A097188.
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
-
A025748 :=proc(n)
local x;
coeftayl(4-(1-9*x)^(1/3),x=0,n) ;
%/3 ;
end proc: # R. J. Mathar, Nov 01 2012
-
CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *)
Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
-
a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
-
def A025748_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P((4 - (1-9*x)^(1/3))/3).list()
A025748_list(25) # G. C. Greubel, Sep 17 2019
A004990
a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k - 1).
Original entry on oeis.org
1, -3, -9, -45, -270, -1782, -12474, -90882, -681615, -5225715, -40760577, -322379109, -2579032872, -20830650120, -169621008120, -1390892266584, -11474861199318, -95173848770814, -793115406423450, -6637123664280450, -55751838779955780
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..20], n-> 3^n*Product([0..n-1], k-> 3*k-1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
-
[1] cat [3^n*(&*[3*k-1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 22 2019
-
a:= n-> (3^n/n!)*mul(3*k-1, k=0..n-1): seq(a(n), n=0..20); # G. C. Greubel, Aug 22 2019
-
FullSimplify[Table[3^(2*n) * Gamma[n-1/3] / (n! * Gamma[-1/3]),{n,0,20}]] (* Vaclav Kotesovec, Dec 03 2014 *)
-
for(n=0,30,print1( (3^n/n!)*prod(k=0,n-1,(3*k-1) ),","))
-
[9^n*rising_factorial(-1/3, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 22 2019
A097188
G.f. A(x) satisfies A057083(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097186.
Original entry on oeis.org
1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4, eq.(23) for l=4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1 - (1-9*x)^(1/3))/(3*x) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series((1-(1-9*x)^(1/3))/(3*x), x, n+2), x, n), n = 0..25); # G. C. Greubel, Sep 17 2019
-
Table[FullSimplify[9^n * Gamma[n+2/3] / ((n+1) * Gamma[2/3] * Gamma[n+1])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
CoefficientList[Series[(1-(1 - 9 x)^(1/3))/(3 x), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 10 2014 *)
-
a(n)=polcoeff((1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x),n,x)
-
def A097188_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P((1 - (1-9*x)^(1/3))/(3*x)).list()
A097188_list(25) # G. C. Greubel, Sep 17 2019
A034171
Related to triple factorial numbers A007559(n+1).
Original entry on oeis.org
1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0
-
CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)
A067622
Consider the power series (x + 1)^(1/3) = 1 + x/3-x^2/9 + 5x^3/81 + ...; sequence gives numerators of coefficients.
Original entry on oeis.org
1, 1, -1, 5, -10, 22, -154, 374, -935, 21505, -55913, 147407, -1179256, 3174920, -8617640, 70664648, -194327782, 537259162, -13431479050, 37466757350, -104906920580, 884215473460, -2491879970660, 7042269482300, -59859290599550
Offset: 0
-
s := convert(taylor((x+1)^(1/3), x, 50), polynom): for n from 0 to 50 do printf(`%a,`, abs(numer(coeff(s, x, n)))) od;
seq(numer(subs(k=1/3,expand(binomial(k,n)))),n=0..50) # James R. Buddenhagen, Aug 16 2014
A185047
Expansion of 2F1( [1, 4/3]; [3]; 9*x).
Original entry on oeis.org
1, 4, 21, 126, 819, 5616, 40014, 293436, 2200770, 16805880, 130245570, 1021926780, 8102419470, 64819355760, 522606055815, 4242331511910, 34645707347265, 284459491903860, 2346790808206845, 19444838125142430, 161745698950048395, 1350224965148230080
Offset: 0
-
A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # Wesley Ivan Hurt, Feb 16 2017
-
CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x]
Showing 1-6 of 6 results.
Comments