A025748
3rd-order Patalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005, eq. (5.1).
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
Apart from the initial 1, identical to
A097188.
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
-
A025748 :=proc(n)
local x;
coeftayl(4-(1-9*x)^(1/3),x=0,n) ;
%/3 ;
end proc: # R. J. Mathar, Nov 01 2012
-
CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *)
Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
-
a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
-
def A025748_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P((4 - (1-9*x)^(1/3))/3).list()
A025748_list(25) # G. C. Greubel, Sep 17 2019
A248324
Square array read by antidiagonals downwards: super Patalan numbers of order 3.
Original entry on oeis.org
1, 3, 6, 18, 9, 45, 126, 36, 45, 360, 945, 189, 135, 270, 2970, 7371, 1134, 567, 648, 1782, 24948, 58968, 7371, 2835, 2268, 3564, 12474, 212058, 480168, 50544, 15795, 9720, 10692, 21384, 90882, 1817640, 3961386, 360126, 94770, 47385, 40095, 56133, 136323, 681615, 15677145, 33011550, 2640924, 600210, 252720, 173745, 187110, 318087, 908820, 5225715, 135868590
Offset: 0
T(0..4,0..4) is:
1 3 18 126 945
6 9 36 189 1134
45 45 135 567 2835
360 270 648 2268 9720
2970 1782 3564 10692 40095
A369114
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^3) ).
Original entry on oeis.org
1, 3, 15, 92, 630, 4620, 35494, 282015, 2298417, 19108265, 161418543, 1381606044, 11955789440, 104427062460, 919430773992, 8151530382264, 72711166411422, 652075100808960, 5875868463764446, 53175058170610530, 483082193418731280, 4404057834071995110
Offset: 0
-
A369114 := proc(n)
add(binomial(n+k,k) * binomial(4*n+2,n-3*k),k=0..floor(n/3)) ;
%/(n+1) ;
end proc;
seq(A369114(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^3))/x)
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(4*n+2, n-3*k))/(n+1);
A097186
Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/3) = 3^n, where R_n(y) forms the initial (n+1) terms of g.f. A057083(y)^(n+1).
Original entry on oeis.org
1, 1, 6, 1, 9, 45, 1, 12, 78, 360, 1, 15, 120, 675, 2970, 1, 18, 171, 1134, 5859, 24948, 1, 21, 231, 1764, 10458, 51030, 212058, 1, 24, 300, 2592, 17334, 95256, 445824, 1817640, 1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145, 1, 30, 465, 4950, 40590, 272646, 1557765, 7760610, 34285680, 135868590
Offset: 0
Row polynomials evaluated at y=1/3 equals powers of 3:
3^1 = 1 + 6/3;
3^2 = 1 + 9/3 + 45/3^2;
3^3 = 1 + 12/3 + 78/3^2 + 360/3^3;
3^4 = 1 + 15/3 + 120/3^2 + 675/3^3 + 2970/3^4;
where A057083(y)^(n+1) has the same initial terms as the n-th row:
A057083(y) = 1 + 3y + 6y^2 + 9y^3 + 9y^4 + 0y^5 - 27y^6 +...
A057083(y)^2 = 1 + 6y +...
A057083(y)^3 = 1 + 9y + 45y^2 +...
A057083(y)^4 = 1 + 12y + 78y^2 + 360y^3 +...
A057083(y)^5 = 1 + 15y + 120y^2 + 675y^3 + 2970y^4 +...
Rows begin with n=0:
1;
1, 6;
1, 9, 45;
1, 12, 78, 360;
1, 15, 120, 675, 2970;
1, 18, 171, 1134, 5859, 24948;
1, 21, 231, 1764, 10458, 51030, 212058;
1, 24, 300, 2592, 17334, 95256, 445824, 1817640;
1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145; ...
-
Table[SeriesCoefficient[3y/((1-9xy) - (1-3y)*(1-9xy)^(2/3)), {x,0,n}, {y,0,k}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 3^n*(3^n -sum(j=0,n-1, T(n,j)/3^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}
A369102
Expansion of (1/x) * Series_Reversion( x * ((1-x)^4-x^4) ).
Original entry on oeis.org
1, 4, 26, 204, 1772, 16408, 158752, 1585968, 16235472, 169423232, 1795611168, 19275231872, 209140483328, 2289981517312, 25271472702464, 280795784911616, 3138701648319744, 35270318924758016, 398215386792574464, 4515067063939210240, 51388662166213954560
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4-x^4))/x)
-
a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(5*n+3, n-4*k))/(n+1);
A369124
Expansion of (1/x) * Series_Reversion( x * ((1-x)^4+x^4) ).
Original entry on oeis.org
1, 4, 26, 204, 1770, 16352, 157696, 1569096, 15988652, 165998624, 1749696208, 18673883696, 201394693864, 2191421381632, 24028822589440, 265238416143584, 2944999336948944, 32869042668479424, 368551132961138784, 4149643380825661824, 46897527236429235520
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4+x^4))/x)
-
a(n) = sum(k=0, n\4, (-1)^k*binomial(n+k, k)*binomial(5*n+3, n-4*k))/(n+1);
A147630
a(1) = 1; for n>1, a(n) = Product_{k = 1..n-1} (9k - 3).
Original entry on oeis.org
1, 6, 90, 2160, 71280, 2993760, 152681760, 9160905600, 632102486400, 49303993939200, 4289447472710400, 411786957380198400, 43237630524920832000, 4929089879840974848000, 606278055220439906304000, 80028703289098067632128000, 11284047163762827536130048000
Offset: 1
Cf.
A147629,
A049211,
A051232,
A045756,
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A053116.
-
[Round(9^n*Gamma(n+6/9)/Gamma(6/9)): n in [0..20]]; // Vincenzo Librandi, Feb 21 2015
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,9}];lst
Table[Product[9k-3,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Sep 01 2016 *)
-
a(n):=n!*sum(binomial(k,n-k-1)*3^k*(-1)^(n-k-1)*binomial(n+k-1,n-1),k,1,n-1)/n; /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n) = n--; prod(k=1, n, 9*k-3); \\ Michel Marcus, Feb 28 2015
A369125
Expansion of (1/x) * Series_Reversion( x * ((1-x)^5+x^5) ).
Original entry on oeis.org
1, 5, 40, 385, 4095, 46375, 548300, 6689550, 83593250, 1064463125, 13762667750, 180189122750, 2384130651875, 31829162793750, 428227113655000, 5800188020157500, 79026653220693750, 1082367047392625000, 14893567523068062500, 205796463286063912500
Offset: 0
-
A369125 := proc(n)
add((-1)^k * binomial(n+k,k) * binomial(6*n+4,n-5*k),k=0..floor(n/5)) ;
%/(n+1) ;
end proc;
seq(A369125(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^5+x^5))/x)
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(6*n+4, n-5*k))/(n+1);
A225439
Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)).
Original entry on oeis.org
1, 3, 21, 162, 1305, 10773, 90342, 765936, 6546177, 56293380, 486451251, 4220183916, 36731240910, 320571837810, 2804298945840, 24580601689752, 215832643307217, 1898042178972285, 16714070686567620, 147360883148636850, 1300623629653125855
Offset: 0
-
A225439 := n -> `if`(n=0,1,(GAMMA(n+2/3)/GAMMA(2/3)+GAMMA(n+1/3)/(GAMMA(1/3)))* 3^(2*n-1)/GAMMA(n+1)): seq(A225439(i),i=0..20); # Peter Luschny, Jul 05 2013
-
Table[Sum[Binomial[k,n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1,n-1], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 22 2013 *)
-
a(n):=if n=0 then 1 else sum(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1),k,0,n);
-
my(x='x+O('x^66)); Vec(3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3))) \\ Joerg Arndt, May 08 2013
-
{a(n)=local(B=(1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x));polcoeff(1+x*B'/B, n, x)} \\ Paul D. Hanna, May 08 2013
A097189
Row sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n >= 0.
Original entry on oeis.org
1, 7, 55, 451, 3781, 32131, 275563, 2378971, 20640907, 179791327, 1571002291, 13762897435, 120832716655, 1062818450155, 9363143224315, 82600459304203, 729572125425661, 6450872644562491, 57092964352312951, 505729048454449651
Offset: 0
-
List([0..30], n-> 1 + Sum([0..n-1], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*3^j*Binomial(j, n-k-j)*Binomial(n+j, n) )) ); # G. C. Greubel, Sep 17 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3/((1-9*x) + 2*(1-9*x)^(2/3)) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series(3/((1-9*x) + 2*(1-9*x)^(2/3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 17 2019
-
CoefficientList[Series[3/((1-9*x) + 2*(1-9*x)^(2/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
-
a(n):=sum(sum(binomial(k,n-m-k)*3^k*(-1)^(n-m-k)*binomial(n+k,n),k,0,n-m),m,0,n-1)+1; /* Vladimir Kruchinin, Sep 09 2019 */
-
a(n)=polcoeff(3/((1-9*x)+2*(1-9*x+x*O(x^n))^(2/3)),n,x)
-
def A097189_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 3/((1-9*x) + 2*(1-9*x)^(2/3)) ).list()
A097189_list(30) # G. C. Greubel, Sep 17 2019
Showing 1-10 of 13 results.
Comments