A248325
Square array read by antidiagonals downwards: super Patalan numbers of order 4.
Original entry on oeis.org
1, 4, 12, 40, 24, 168, 480, 160, 224, 2464, 6240, 1440, 1120, 2464, 36960, 84864, 14976, 8064, 9856, 29568, 561792, 1188096, 169728, 69888, 59136, 98560, 374528, 8614144, 16972800, 2036736, 678912, 439296, 506880, 1070080, 4922368, 132903936, 246105600, 25459200, 7128576, 3734016, 3294720, 4815360
Offset: 0
T(0..4, 0..4) is:
1 4 40 480 6240
12 24 160 1440 14976
168 224 1120 8064 69888
2464 2464 9856 59136 439296
36960 29568 98560 506880 3294720
A248326
Square array read by downward antidiagonals: super Patalan numbers of order 5.
Original entry on oeis.org
1, 5, 20, 75, 50, 450, 1375, 500, 750, 10500, 27500, 6875, 5625, 13125, 249375, 577500, 110000, 61875, 78750, 249375, 5985000, 12512500, 1925000, 825000, 721875, 1246875, 4987500, 144637500, 277062500, 35750000, 12375000, 8250000, 9796875, 21375000, 103312500, 3512625000, 6233906250, 692656250
Offset: 0
T(0..4,0..4) is
1 5 75 1375 27500
20 50 500 6875 110000
450 750 5625 61875 825000
10500 13125 78750 721875 8250000
249375 249375 1246875 9796875 97968750
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*25^(n+k)*binomial(n-1/5,n+k)) \\ Michel Marcus, Oct 09 2014
A248328
Square array read by antidiagonals downwards: super Patalan numbers of order 6.
Original entry on oeis.org
1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0
T(0..4,0..4) is
1 6 126 3276 93366
30 90 1260 24570 560196
990 1980 20790 324324 6162156
33660 50490 424116 5513508 89791416
1161270 1393524 9754668 108694872 1548901926
Cf.
A068555,
A025751,
A004993 (first row),
A004994 (first column),
A004995 (second row),
A004996 (second column),
A248324,
A248325,
A248326,
A248329,
A248332.
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014
A248329
Square array read by antidiagonals downwards: super Patalan numbers of order 7.
Original entry on oeis.org
1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0
T(0..4,0..4) is
1 7 196 6860 264110
42 147 2744 72030 2218524
1911 4459 62426 1310946 33647614
89180 156065 1747928 30588740 672952280
4213755 5899257 55059732 825895980 15898497615
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014
A248332
Square array read by antidiagonals downwards: super Patalan numbers of order 8.
Original entry on oeis.org
1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0
T(0..4,0..4) is
1 8 288 13056 652800
56 224 5376 182784 7311360
3360 8960 161280 4386816 146227200
206080 412160 5935104 134529024 3843686400
12776960 20443136 245317632 4766171136 119154278400
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014
A283150
Riordan array (1/(1-9x)^(1/3), x/(9x-1)).
Original entry on oeis.org
1, 3, -1, 18, -12, 1, 126, -126, 21, -1, 945, -1260, 315, -30, 1, 7371, -12285, 4095, -585, 39, -1, 58968, -117936, 49140, -9360, 936, -48, 1, 480168, -1120392, 560196, -133380, 17784, -1368, 57, -1, 3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1, 33011550, -99034650, 66023100
Offset: 0
The triangle begins
1;
3, -1;
18, -12, 1;
126, -126, 21, -1;
945, -1260, 315, -30, 1;
7371, -12285, 4095, -585, 39, -1;
58968, -117936, 49140, -9360, 936, -48, 1;
480168, -1120392, 560196, -133380, 17784, -1368, 57, -1;
3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
-
T := (n, k) -> (-1)^k*binomial(n - 2/3, n - k)*9^(n - k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Sep 03 2021
-
a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n);
tabl(nn) = for(n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2017
A283151
Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).
Original entry on oeis.org
1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0
Triangle begins
1;
6, -1;
45, -15, 1;
360, -180, 24, -1;
2970, -1980, 396, -33, 1;
24948, -20790, 5544, -693, 42, -1;
212058, -212058, 70686, -11781, 1071, -51, 1;
1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1;
15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
Showing 1-7 of 7 results.
Comments