cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248328 Square array read by antidiagonals downwards: super Patalan numbers of order 6.

Original entry on oeis.org

1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 6, A025751.

Examples

			T(0..4,0..4) is
  1          6         126       3276      93366
  30         90        1260      24570     560196
  990        1980      20790     324324    6162156
  33660      50490     424116    5513508   89791416
  1161270    1393524   9754668   108694872 1548901926
		

Crossrefs

Cf. A068555, A025751, A004993 (first row), A004994 (first column), A004995 (second row), A004996 (second column), A248324, A248325, A248326, A248329, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(36*n-6)/(n+k), T(n,k) = T(n,k-1)*(36*k-30)/(n+k).
G.f.: (x/(1-36*x)^(5/6)+y/(1-36*y)^(1/6))/(x+y-36*x*y).
T(n,k) = (-1)^k*36^(n+k)*binomial(n-1/6,n+k).

A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.

Original entry on oeis.org

1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 7, A025752.

Examples

			T(0..4,0..4) is
  1           7          196        6860       264110
  42          147        2744       72030      2218524
  1911        4459       62426      1310946    33647614
  89180       156065     1747928    30588740   672952280
  4213755     5899257    55059732   825895980  15898497615
		

Crossrefs

Cf. A068555, A025752, A034835 (first row), A216703 (first column), A248324, A248325, A248326, A248328, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(49*n-7)/(n+k), T(n,k) = T(n,k-1)*(49*k-42)/(n+k).
G.f.: (x/(1-49*x)^(6/7)+y/(1-49*y)^(1/7))/(x+y-49*x*y).
T(n,k) = (-1)^k*49^(n+k)*binomial(n-1/7,n+k).

A248332 Square array read by antidiagonals downwards: super Patalan numbers of order 8.

Original entry on oeis.org

1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 8, A025753.

Examples

			T(0..4,0..4) is
  1           8           288         13056       652800
  56          224         5376        182784      7311360
  3360        8960        161280      4386816     146227200
  206080      412160      5935104     134529024   3843686400
  12776960    20443136    245317632   4766171136  119154278400
		

Crossrefs

Cf. A068555, A025753, A034977 (first row), A216704 (first column), A248324, A248325, A248326, A248328, A248329.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(64*n-8)/(n+k), T(n,k) = T(n,k-1)*(64*k-56)/(n+k).
G.f.: (x/(1-64*x)^(7/8)+y/(1-64*y)^(1/8))/(x+y-64*x*y).
T(n,k) = (-1)^k*64^(n+k)*binomial(n-1/8,n+k).
Showing 1-3 of 3 results.