cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A034164 Related to triple factorial numbers 2*A034000(n+1).

Original entry on oeis.org

1, 5, 30, 198, 1386, 10098, 75735, 580635, 4528953, 35819901, 286559208, 2314516680, 18846778680, 154543585176, 1274984577702, 10574872085646, 88123934047050, 737458184920050, 6194648753328420, 52212039492339540, 441429061162507020, 3742550735942994300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 -3*x -(1-9*x)^(1/3))/(3*x)^2 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-3*x-(1-9*x)^(1/3))/(3*x)^2, x, n+2), x, n), n = 0..32); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[ HypergeometricPFQ[{1, 5/3}, {3}, 9 x], {x, 0, 20}], x]
    Table[FullSimplify[3^(2*n+1) * Gamma[n+5/3] / ((n+2) * Gamma[2/3] * Gamma[n+2])],{n,0,20}] (* Vaclav Kotesovec, Feb 09 2014 *)
    CoefficientList[Series[(1 -3x -(1-9 x)^(1/3))/(3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((1 -3*x -(1-9*x)^(1/3))/(3*x)^2) \\ G. C. Greubel, Sep 17 2019
    
  • Sage
    def A034164_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1 -3*x -(1-9*x)^(1/3))/(3*x)^2).list()
    A034164_list(30) # G. C. Greubel, Sep 17 2019

Formula

a(n) = 3^n*(3*n+2)!!!/(n+2)!, where (3*n+2)!!! = 2*A034000(n+1).
G.f.: (1 - 3*x - (1-9*x)^(1/3))/(3*x)^2.
G.f.: 2F1( (1, 5/3); 3; 9 x ). - Olivier Gérard, Feb 15 2011
D-finite with recurrence: (n+2)*a(n) - 3*(3*n+2)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012
a(n) = 3^(2*n+1) * Gamma(n+5/3) / ((n+2) * Gamma(2/3) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
Integral representation as the n-th moment of a positive function on (0,9): a(n) = Integral_{x=0..9} x^n*W(x) dx, n >= 0, where W(x) = (1/18)*9^(1/3)*sqrt(3)*x^(2/3)*(1-x/9)^(1/3)/Pi. This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson, Nov 07 2015
Sum_{n>=0} 1/a(n) = 15/16 + (27/64)*(Pi*sqrt(3)/3 - log(3)). - Amiram Eldar, Dec 02 2022
a(n) ~ 3^(2*n+1) * n^(-4/3) / Gamma(2/3). - Amiram Eldar, Aug 19 2025

A008544 Triple factorial numbers: Product_{k=0..n-1} (3*k+2).

Original entry on oeis.org

1, 2, 10, 80, 880, 12320, 209440, 4188800, 96342400, 2504902400, 72642169600, 2324549427200, 81359229952000, 3091650738176000, 126757680265216000, 5577337931669504000, 262134882788466688000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (aka ordered) trees with n vertices (one of them a root labeled 1) where each vertex with outdegree r >= 0 comes in r+1 types (like an (r+1)-ary vertex). See the increasing tree comments under A004747. - Wolfdieter Lang, Oct 12 2007
An example for the case of 3 vertices is shown below. For the enumeration of non-plane trees of this type see A029768. - Peter Bala, Aug 30 2011
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 2. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016789. - Reinhard Zumkeller, Sep 20 2013
The Mathar conjecture is true. Generally from the factorial form, the last term is the "extra" product beyond the prior term, from k=n-1 and 3k+2 evaluates to 3*(n-1)+2 = 3n-1, yielding a(n) = a(n-1)*(3n-1) (eqn1). Similarly, a(n) = a(n-2)*(3n-1)*(3(n-2)+2) = a(n-2)*(3n-1)*(3n-4) (eqn2) and a(n) = a(n-3)*(3n-1)*(3n-4)*(3*(n-2)+2) = a(n-3)*(3n-1)*(3n-4)*(3n-7) (eqn3). We equate (eqn2) and (eqn3) to get a(n-2)*(3n-1)*(3n-4) = a(n-3)*(3n-1)*(3n-4)*(3n-7) or a(n-2)+(7-3n)*a(n-3) = 0 (eqn4). From (eqn1) we have a(n)+(1-3n)*a(n-1) = 0 (eqn5). Combining (eqn4) and (eqn5) yields a(n)+(1-3n)*a(n-1)+a(n-2)+(7-3n)*a(n-3) = 0. - Bill McEachen, Jan 01 2016
a(n-1), n>=1, is the dimension of the n-th component of the operad encoding the multilinearization of the following identity in nonassociative algebras: s*(a,a,b)-(s+t)*(a,b,a)+t*(b,a,a)=0, for any given pair of scalars (s,t). Here (a,b,c) is the associator (ab)c-a(bc). This is proved in the referenced article on associator dependent algebras by Bremner and me. - Vladimir Dotsenko, Mar 22 2022

Examples

			a(2) = 10 from the described trees with 3 vertices: there are three trees with a root vertex (label 1) with outdegree r=2 (like the three 3-stars each with one different ray missing) and the four trees with a root (r=1 and label 1) a vertex with (r=1) and a leaf (r=0). Assigning labels 2 and 3 yields 2*3+4=10 such trees.
a(2) = 10. The 10 possible plane increasing trees on 3 vertices, where vertices of outdegree 1 come in 2 colors (denoted a or b) and vertices of outdegree 2 come in 3 colors (a, b or c), are:
.
   1a    1b    1a    1b        1a       1b       1c
   |     |     |     |        / \      / \      / \
   2a    2b    2b    2a      2   3    2   3    2   3
   |     |     |     |
   3     3     3     3         1a       1b       1c
                              / \      / \      / \
                             3   2    3   2    3   2
		

Crossrefs

a(n) = A004747(n+1, 1) (first column of triangle). Cf. A051141.
Cf. A225470, A290596 (first columns).
Subsequence of A007661.

Programs

  • Haskell
    a008544 n = a008544_list !! n
    a008544_list = scanl (*) 1 a016789_list
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    [Round((Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6) )/ Sqrt(3)*3^n/4^(n-1)): n in [1..20]]; // Vincenzo Librandi, Feb 21 2015
    
  • Magma
    [Round(3^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
  • Maple
    a := n -> mul(3*k-1, k = 1..n);
    A008544 := n -> mul(k, k = select(k-> k mod 3 = 2, [$1 .. 3*n])): seq(A008544(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    k = 3; b[1]=2; b[n_]:= b[n] = b[n-1]+k; a[0]=1; a[1]=2; a[n_]:= a[n] = a[n-1]*b[n]; Table[a[n], {n,0,20}] (* Roger L. Bagula, Sep 17 2008 *)
    Product[3 k + 2, {k, 0, # - 1}] & /@ Range[0, 16] (* Michael De Vlieger, Jan 02 2016 *)
    Table[3^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
  • Maxima
    a(n):=((n)!*sum(binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k),k,floor(n/2),n)); /* Vladimir Kruchinin, Sep 28 2013 */
    
  • PARI
    a(n) = prod(k=0,n-1, 3*k+2 );
    
  • PARI
    vector(20, n, n--; round(3^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
    
  • Sage
    @CachedFunction
    def A008544(n): return 1 if n == 0 else (3*n-1)*A008544(n-1)
    [A008544(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    
  • Sage
    [3^n*rising_factorial(2/3, n) for n in (0..20)] # G. C. Greubel, Mar 31 2019
    

Formula

a(n) = Product_{k=0..n-1} (3*k+2) = A007661(3*n-1) (with A007661(-1) = 1).
E.g.f.: (1-3*x)^(-2/3).
a(n) = 2*A034000(n), n >= 1, a(0) = 1.
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(1/6)*3^n*e^-n*n^n*{1 - 1/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = (Gamma(2*n-5/3)/Gamma(n-5/6)*Gamma(2/3)/Gamma(5/6))/sqrt(3)*3^n/4^(n-1). - Jeremy L. Martin, Mar 31 2002 (typo fixed by Vincenzo Librandi, Feb 21 2015)
From Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003: (Start)
a(n) = A084939(n)/A000142(n)*A000079(n).
a(n) = 3^n*Pochhammer(2/3, n) = 3^n*Gamma(n+2/3)/Gamma(2/3). (End)
Let T = A094638 and c(t) = column vector(1, t, t^2, t^3, t^4, t^5,...), then A008544 = unsigned [ T * c(-3) ] and the list partition transform A133314 of [1,T * c(-3)] gives [1,T * c(3)] with all odd terms negated, which equals a signed version of A007559; i.e., LPT[(1,signed A008544)] = signed A007559. Also LPT[A007559] = (1,-A008544) and e.g.f. [1,T * c(t)] = (1-x*t)^(-1/t) for t = 3 or -3. Analogous results hold for the double factorial, quadruple factorial and so on. - Tom Copeland, Dec 22 2007
G.f.: 1/(1-2x/(1-3x/(1-5x/(1-6x/(1-8x/(1-9x/(1-11x/(1-12x/(1-...))))))))) (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+2)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+2)/(x*(3*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
D-finite with recurrence: a(n) = (9*(n-2)*(n-1)+2)*a(n-2) + 4*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 09 2013
a(n) = n!*Sum_{k=floor(n/2)..n} binomial(k,n-k)*binomial(n+k,k)*3^(-n+k)*(-1)^(n-k). - Vladimir Kruchinin, Sep 28 2013
Recurrence equation: a(n) = 3*a(n-1) + (3*n - 4)^2*a(n-2) with a(0) = 1 and a(1) = 2. A024396 satisfies the same recurrence (but with different initial conditions). This observation leads to a continued fraction expansion for the constant A193534 due to Euler. - Peter Bala, Feb 20 2015
a(n) = A225470(n, 0), n >= 0. - Wolfdieter Lang, May 29 2017
G.f.: Hypergeometric2F0(1, 2/3; -; 3*x). - G. C. Greubel, Mar 31 2019
D-finite with recurrence: a(n) + (-3*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
G.f.: 1/(1-2*x-6*x^2/(1-8*x-30*x^2/(1-14*x-72*x^2/(1-20*x-132*x^2/(1-...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
G.f.: 1/G(0), where G(k) = 1 - (6*k+2)*x - 3*(k+1)*(3*k+2)*x^2/G(k+1). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + (e/3)^(1/3) * (Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Mar 01 2022

A025748 3rd-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0

Views

Author

Keywords

Comments

G.f. (with a(0)=0) is series reversion of x - 3*x^2 + 3*x^3.
The Hankel transform of a(n) is A005130(n) * 3^binomial(n,2).

Crossrefs

Apart from the initial 1, identical to A097188.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    A025748 :=proc(n)
            local x;
            coeftayl(4-(1-9*x)^(1/3),x=0,n) ;
            %/3 ;
    end proc: # R. J. Mathar, Nov 01 2012
  • Mathematica
    CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *)
    Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
    a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
  • PARI
    a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
    
  • Sage
    def A025748_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((4 - (1-9*x)^(1/3))/3).list()
    A025748_list(25) # G. C. Greubel, Sep 17 2019

Formula

From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) + 3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
For n >= 1, a(n) = Integral_{x = 0..9} x^n * w(x) dx, where w(x) = 1/(2*sqrt(3)*Pi) * x^(2/3)*(9 - x)^(1/3)/x^2. - Peter Bala, Oct 14 2024
a(n) ~ 9^(n-1) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025

A034001 One third of triple factorial numbers.

Original entry on oeis.org

1, 6, 54, 648, 9720, 174960, 3674160, 88179840, 2380855680, 71425670400, 2357047123200, 84853696435200, 3309294160972800, 138990354760857600, 6254565964238592000, 300219166283452416000, 15311177480456073216000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20],n->3^(n-1)*Factorial(n)); # Muniru A Asiru, Jul 28 2018
    
  • Magma
    [3^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    G(x):=(1-3*x)^(n-3): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..16); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    terms = 17;
    CoefficientList[1/(1-3x)^2 + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jul 28 2018 *)
    Table[3^(n-1)*n!, {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    vector(20, n, 3^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [3^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019

Formula

3*a(n) = (3*n)!!! = Product_{j=1..n} 3*j = 3^n*n!.
E.g.f.: (-1 + 1/(1-3*x))/3.
E.g.f.: 1/(1-3*x)^2. - Paul Barry, Sep 14 2004. For offset 0. - Wolfdieter Lang, Apr 06 2017
D-finite with recurrence a(n) - 3*n*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(exp(1/3)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(1-exp(-1/3)). (End)

A035022 One eighth of 9-factorial numbers.

Original entry on oeis.org

1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Maple
    f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
    map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
  • Mathematica
    Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022

Formula

8*a(n) = (9*n-1)(!^9) := Product_{j=1..n} (9*j - 1).
a(n) = (9*n)!/(n!*2^4*3^(4*n)*5*7*A045756(n)*A035012(n)*A007559(n)*A035017(n) *A035018(n)*A034000(n) *A035021(n)).
E.g.f.: (-1+(1-9*x)^(-8/9))/8.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 1)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/8) * 9^n * Pochhammer(n, 8/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A049211(n)/8.
Sum_{n>=1} 1/a(n) = 8*(e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). (End)

A035020 One sixth of 9-factorial numbers.

Original entry on oeis.org

1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(2/3,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

6*a(n) = (9*n-3)(!^9) := Product_{j=1..n} (9*j-3) = 3^n*2*A034000(n), where 2*A034000(n) = (3*n-1)(!^3) := Product_{j=1..n} (3*j-1).
E.g.f.: (-1+(1-9*x)^(-2/3))/6.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/6) * 9^n * Pochhammer(n, 2/3).
a(n) = (9*n - 3)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147630(n+1)/6.
Sum_{n>=1} 1/a(n) = 6*(e/9^3)^(1/9)*(Gamma(2/3) - Gamma(2/3, 1/9)). (End)

A034724 a(n) = n-th sextic factorial number divided by 4.

Original entry on oeis.org

1, 10, 160, 3520, 98560, 3351040, 134041600, 6165913600, 320627507200, 18596395417600, 1190169306726400, 83311851470848000, 6331700711784448000, 519199458366324736000, 45689552336236576768000, 4294817919606238216192000, 429481791960623821619200000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([1..n], j-> 6*j-2)/4 ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[6*j-2: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(6*j-2, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    With[{nn=20},CoefficientList[Series[((1-6x)^(-2/3)-1)/4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 02 2017 *)
    Table[6^n*Pochhammer[2/3, n]/4, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(20, n, prod(j=1,n, 6*j-2)/4 ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (6*j-2) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

4*a(n) = (6*n-2)(!^6) = Product_{j=1..n} (6*j-2).
a(n) = 2^(n+1)*A034000(n), 2*A034000(n) = (3*n-1)(!^3).
E.g.f.: (-1 + (1-6*x)^(-2/3))/4.
D-finite with recurrence: a(n) +2*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
Sum_{n>=1} 1/a(n) = 4*(e/6^2)^(1/6)*(Gamma(2/3) - Gamma(2/3, 1/6)). - Amiram Eldar, Dec 18 2022
a(n) ~ sqrt(Pi) * 2^(n-3/2) * (3/e)^n * n^(n+1/6) / Gamma(2/3). - Amiram Eldar, Sep 01 2025

A034787 a(n) = n-th sextic factorial number divided by 5.

Original entry on oeis.org

1, 11, 187, 4301, 124729, 4365515, 178986115, 8412347405, 445854412465, 26305410335435, 1709851671803275, 121399468698032525, 9347759089748504425, 775864004449125867275, 69051896395972202187475, 6559930157617359207810125, 662552945919353279988822625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([1..n], j-> 6*j-1)/5 ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[6*j-1: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(6*j-1, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[6^n*Pochhammer[5/6, n]/5, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
    With[{nn=20},CoefficientList[Series[(-1+(1-6x)^(-5/6))/5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    vector(20, n, prod(j=1,n, 6*j-1)/5 ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (6*j-1) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

5*a(n) = (6*n-1)(!^6) = Product_{j=1..n} (6*j-1) = (6*n)!/(3^(2*n)*2^(2*n+1)*(2*n)!*A008542(n)*A007559(n)*A034000(n)).
E.g.f.: (-1 + (1-6*x)^(-5/6))/5.
a(n+1) ~ sqrt(2*Pi) * 6/(5*Gamma(5/6)) * n^(4/3) * (6*n/e)^n * (1 + (61/72)/n + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence: a(n) +(-6*n+1)*a(n-1)=0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 5*(e/6)^(1/6)*(Gamma(5/6) - Gamma(5/6, 1/6)). - Amiram Eldar, Dec 18 2022

A051604 a(n) = (3*n+4)!!!/4!!!.

Original entry on oeis.org

1, 7, 70, 910, 14560, 276640, 6086080, 152152000, 4260256000, 132067936000, 4490309824000, 166141463488000, 6645658539520000, 285763317199360000, 13145112591170560000, 644110516967357440000, 33493746882302586880000, 1842156078526642278400000
Offset: 0

Views

Author

Keywords

Comments

Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=4 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1). (rows m=0..3).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1-3*x)^(7/3), {x, 0, nn}], x]* Range[0,nn]! ] (* G. C. Greubel, Aug 15 2018 *)
    With[{c=Times@@Range[4,1,-3]},Table[(Times@@Range[3n+4,1,-3])/c,{n,0,20}]] (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+4)(!^3))/4(!^3).
E.g.f.: 1/(1-3*x)^(7/3).
Sum_{n>=0} 1/a(n) = 1 + 3*(3*e)^(1/3)*(Gamma(7/3) - Gamma(7/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051605 a(n) = (3*n+5)!!!/5!!!.

Original entry on oeis.org

1, 8, 88, 1232, 20944, 418880, 9634240, 250490240, 7264216960, 232454942720, 8135922995200, 309165073817600, 12675768026521600, 557733793166950400, 26213488278846668800, 1310674413942333440000, 69465743938943672320000, 3890081660580845649920000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=5 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604 (rows m=0..4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==(3n+5)a[n-1]},a,{n,20}] (* Harvey P. Dale, Oct 19 2013 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(8/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(8/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+5)(!^3))/5(!^3).
E.g.f.: 1/(1-3*x)^(8/3).
a(n) = 3^n*(n+5/3)!/(5/3)!. - Paul Barry, Sep 04 2005
a(n) = (3*n+5)*a(n-1). - R. J. Mathar, Nov 13 2012
Sum_{n>=0} 1/a(n) = 1 + 3*(9*e)^(1/3)*(Gamma(8/3) - Gamma(8/3, 1/3)). - Amiram Eldar, Dec 23 2022
Showing 1-10 of 21 results. Next