cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A257622 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 4.

Original entry on oeis.org

1, 4, 4, 16, 56, 16, 64, 552, 552, 64, 256, 4696, 11040, 4696, 256, 1024, 36968, 171448, 171448, 36968, 1024, 4096, 278232, 2305968, 4457648, 2305968, 278232, 4096, 16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384
Offset: 0

Views

Author

Dale Gerdemann, May 10 2015

Keywords

Examples

			Triangle begins as:
      1;
      4,       4;
     16,      56,       16;
     64,     552,      552,       64;
    256,    4696,    11040,     4696,      256;
   1024,   36968,   171448,   171448,    36968,     1024;
   4096,  278232,  2305968,  4457648,  2305968,   278232,    4096;
  16384, 2037736, 28346088, 94844912, 94844912, 28346088, 2037736, 16384;
		

Crossrefs

See similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,3,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • Sage
    def T(n,k,a,b): # A257622
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,3,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 4.
Sum_{k=0..n} T(n, k) = A051605(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 4. - G. C. Greubel, Mar 20 2022

A303486 a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).

Original entry on oeis.org

1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
    Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[3^n Pochhammer[n/3, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (3*k + n).
a(n) = 3^n*Gamma(4*n/3)/Gamma(n/3).
a(n) ~ 2^(8*n/3-1)*n^n/exp(n).

A051607 a(n) = (3*n+7)!!!/7!!!.

Original entry on oeis.org

1, 10, 130, 2080, 39520, 869440, 21736000, 608608000, 18866848000, 641472832000, 23734494784000, 949379791360000, 40823331028480000, 1877873227310080000, 92015788138193920000, 4784820983186083840000, 263165154075234611200000, 15263578936363607449600000
Offset: 0

Views

Author

Keywords

Comments

Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=7 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051608, A051609 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(10/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(10/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(10/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+7)(!^3))/7(!^3).
E.g.f.: 1/(1-3*x)^(10/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(3*e)^(1/3)*(Gamma(10/3) - Gamma(10/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051608 a(n) = (3*n+8)!!!/8!!!.

Original entry on oeis.org

1, 11, 154, 2618, 52360, 1204280, 31311280, 908027120, 29056867840, 1016990374400, 38645634227200, 1584471003315200, 69716724145868800, 3276686034855833600, 163834301742791680000, 8683217992367959040000, 486260207572605706240000, 28689352246783736668160000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=8 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051607, A051609 (rows m=0..9).
Cf. A008544.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(11/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(11/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(11/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+8)(!^3))/8(!^3).
E.g.f.: 1/(1-3*x)^(11/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(9*e)^(1/3)*(Gamma(11/3) - Gamma(11/3, 1/3)). - Amiram Eldar, Dec 23 2022

A112333 An invertible triangle of ratios of triple factorials.

Original entry on oeis.org

1, 2, 1, 10, 5, 1, 80, 40, 8, 1, 880, 440, 88, 11, 1, 12320, 6160, 1232, 154, 14, 1, 209440, 104720, 20944, 2618, 238, 17, 1, 4188800, 2094400, 418880, 52360, 4760, 340, 20, 1, 96342400, 48171200, 9634240, 1204280, 109480, 7820, 460, 23, 1, 2504902400
Offset: 0

Views

Author

Paul Barry, Sep 04 2005

Keywords

Comments

First column is A008544. Second column is A034000. Third column is A051605. As a square array read by antidiagonals, columns have e.g.f. (1/(1-3x)^(2/3)) * (1/(1-3x))^k.

Examples

			Triangle begins
      1;
      2,    1;
     10,    5,    1;
     80,   40,    8,   1;
    880,  440,   88,  11,  1;
  12320, 6160, 1232, 154, 14, 1;
Inverse triangle A112334 begins
   1;
  -2,  1;
   0, -5,  1;
   0,  0, -8,   1;
   0,  0,  0, -11,   1;
   0,  0,  0,   0, -14,   1;
   0,  0,  0,   0,   0, -17, 1;
		

Programs

  • Maple
    nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012

Formula

Number triangle T(n, k)=if(k<=n, Product{k=1..n, 3k-1}/Product{j=1..k, 3j-1}, 0); T(n, k)=if(k<=n, 3^(n-k)*(n-1/3)!/(k-1/3)!, 0).

A371077 Square array read by ascending antidiagonals: A(n, k) = 3^n*Pochhammer(k/3, n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 28, 10, 3, 1, 0, 280, 80, 18, 4, 1, 0, 3640, 880, 162, 28, 5, 1, 0, 58240, 12320, 1944, 280, 40, 6, 1, 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1, 0, 24344320, 4188800, 524880, 58240, 6160, 648, 70, 8, 1
Offset: 0

Views

Author

Werner Schulte and Peter Luschny, Mar 10 2024

Keywords

Examples

			The array starts:
  [0] 1,    1,     1,     1,     1,      1,      1,      1,      1, ...
  [1] 0,    1,     2,     3,     4,      5,      6,      7,      8, ...
  [2] 0,    4,    10,    18,    28,     40,     54,     70,     88, ...
  [3] 0,   28,    80,   162,   280,    440,    648,    910,   1232, ...
  [4] 0,  280,   880,  1944,  3640,   6160,   9720,  14560,  20944, ...
  [5] 0, 3640, 12320, 29160, 58240, 104720, 174960, 276640, 418880, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0,       1;
  [2] 0,       1,      1;
  [3] 0,       4,      2,     1;
  [4] 0,      28,     10,     3,    1;
  [5] 0,     280,     80,    18,    4,   1;
  [6] 0,    3640,    880,   162,   28,   5,  1;
  [7] 0,   58240,  12320,  1944,  280,  40,  6, 1;
  [8] 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1;
.
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1    1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2    3    4 ... |
    | 0   4   2        | * |     1 3 6 ... | = | 0   4  10   18   28 ... |
    | 0  28  24   6    |   |       1 4 ... |   | 0  28  80  162  280 ... |
    | 0 280 320 144 24 |   |         1 ... |   | 0 280 880 1944 3640 ... |
    | . . .            |   | . . .         |   | . . .                   |
		

Crossrefs

Family m^n*Pochhammer(k/m, n): A094587 (m=1), A370419 (m=2), this sequence (m=3), A370915 (m=4).
Cf. A303486 (main diagonal), A371079 (row sums of triangle), A371076, A371080.

Programs

  • Maple
    A := (n, k) -> 3^n*pochhammer(k/3, n):
    A := (n, k) -> local j; mul(3*j + k, j = 0..n-1):
    # Read by antidiagonals:
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    seq(lprint([n], seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the generating polynomials of the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-3)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..9)), n = 0..5);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 3*x)^(-k/3);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint([k], EGFcol(k, 8)), k = 0..6);
    # As a matrix product:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371076(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    Table[3^(n-k)*Pochhammer[k/3, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 14 2024 *)
  • SageMath
    def A(n, k): return 3**n * rising_factorial(k/3, n)
    def A(n, k): return (-3)**n * falling_factorial(-k/3, n)

Formula

A(n, k) = Product_{j=0..n-1} (3*j + k).
A(n, k) = A(n+1, k-3) / (k - 3) for k > 3.
A(n, k) = Sum_{j=0..n} Stirling1(n, j)*(-3)^(n - j)* k^j.
A(n, k) = k! * [x^k] (exp(x) * p(n, x)), where p(n, x) are the row polynomials of A371080.
E.g.f. of column k: (1 - 3*t)^(-k/3).
E.g.f. of row n: exp(x) * (Sum_{k=0..n} A371076(n, k) * x^k / (k!)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1/(1 - x/(1 - 3*t)^(1/3)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n /(n! * k!) = exp(x/(1 - 3*t)^(1/3)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371076, i.e., A(n, k) = Sum_{i=0..k} A371076(n, i) * binomial(k, i).

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017
Showing 1-8 of 8 results.