cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A008543 Sextuple factorial numbers: Product_{k=0..n-1} (6*k + 5).

Original entry on oeis.org

1, 5, 55, 935, 21505, 623645, 21827575, 894930575, 42061737025, 2229272062325, 131527051677175, 8549258359016375, 606997343490162625, 46738795448742522125, 3879320022245629336375, 345259481979861010937375, 32799650788086796039050625, 3312764729596766399944113125
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

a(n) = A013988(n+1, 1) (first column of triangle).

Programs

  • Magma
    [Round(6^n*Gamma(n+5/6)/Gamma(5/6)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    f := n->product( (6*k-1),k=0..n);
  • Mathematica
    FoldList[Times,1,6Range[0,15]+5]  (* Harvey P. Dale, Feb 20 2011 *)
    Table[6^n*Pochhammer[5/6, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
    CoefficientList[Series[(1 - 6x)^(-5/6), {x, 0, 20}], x] Range[0, 20]! (* Nikolaos Pantelidis, Jan 31 2023 *)
  • PARI
    a(n)=prod(k=1,n,6*k-1) \\ Charles R Greathouse IV, Aug 17 2011
    
  • Sage
    [6^n*rising_factorial(5/6, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019

Formula

a(n) = 5*A034787(n) = (6*n-1)(!^6), n >= 1, a(0) := 1.
E.g.f.: (1 - 6*x)^(-5/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(5/6)^-1*n^(1/3)*6^n*e^-n*n^n*(1 + (1/72)*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
G.f.: 1/(1-5x/(1-6x/(1-11x/(1-12x/(1-17x/(1-18x/(1-23x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 6^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(6*k-1)/(1 - x*(6*k+6)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = 6^n * Gamma(n+5/6) / Gamma(5/6). - Vaclav Kotesovec, Jan 28 2015
D-finite with recurrence: a(n) +(-6*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Nikolaos Pantelidis, May 22 2022: (Start)
G.f.: 1/G(0), where G(k) = 1 - (12*k+5)*x - 6*(k+1)*(6*k+5)*x^2/G(k+1) (a continued fraction);
which starts 1/(1-5*x-30*x^2/(1-17*x-132*x^2/(1-29*x-306*x^2/(1-41*x-552*x^2/(1-53*x-870*x^2/(1-65*x-1260*x^2/(1-...))))))) (a Jacobi continued fraction).
(End)
Sum_{n>=0} 1/a(n) = 1 + (e/6)^(1/6)*(Gamma(5/6) - Gamma(5/6, 1/6)). - Amiram Eldar, Dec 18 2022

A034689 a(n) = n-th sextic factorial number divided by 2.

Original entry on oeis.org

1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

2*a(n) = (6*n-4)(!^6) = Product_{j=1..n} (6*j-4) = 2^n*A007559(n), A007559(n) = (3*n-2)(!^3) = Product_{j=1..n} (3*j-2).
E.g.f.: (-1 + (1-6*x)^(-1/3))/2.
D-finite with recurrence: a(n) = 2*(3*n-2)*a(n-1). - R. J. Mathar, Feb 24 2020
a(n) = 3*6^(n-1)*Pochhammer(n, 1/3). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = A047657(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/6^4)^(1/6)*(Gamma(1/3, 1/6) - Gamma(1/3)). (End)

A034788 a(n) is the n-th sextic factorial number divided by 6.

Original entry on oeis.org

1, 12, 216, 5184, 155520, 5598720, 235146240, 11287019520, 609499054080, 36569943244800, 2413616254156800, 173780370299289600, 13554868883344588800, 1138608986200945459200, 102474808758085091328000, 9837581640776168767488000, 1003433327359169214283776000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> 6^(n-1)*Factorial(n) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [6^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq(6^(n-1)*n!, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[6^(n-1)*n!,{n,20}] (* Harvey P. Dale, Dec 22 2013 *)
  • PARI
    vector(20, n, 6^(n-1)*n!) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [6^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

6*a(n) = (6*n)(!^6) = Product_{j=1..n} 6*j = 6^n*n!.
E.g.f.: (-1 + 1/(1-6*x))/6.
D-finite with recurrence: a(n) - 6*n*a(n-1) = 0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*(exp(1/6)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(1-exp(-1/6)). (End)

A053101 a(n) = ((6*n+8)(!^6))/8(!^6), related to A034689 (((6*n+2)(!^6))/2 sextic, or 6-factorials).

Original entry on oeis.org

1, 14, 280, 7280, 232960, 8852480, 389509120, 19475456000, 1090625536000, 67618783232000, 4598077259776000, 340257717223424000, 27220617377873920000, 2340973094497157120000, 215369524693738455040000
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.

Crossrefs

Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, this sequence, A053102, A053103 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(7/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((6*n+8)(!^6))/8(!^6)= A034689(n+2)/8.
E.g.f.: 1/(1-6*x)^(7/3).

A053103 a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).

Original entry on oeis.org

1, 16, 352, 9856, 335104, 13404160, 616591360, 32062750720, 1859639541760, 119016930672640, 8331185147084800, 633170071178444800, 51919945836632473600, 4568955233623657676800, 429481791960623821619200
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.

Crossrefs

Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, A053102, this sequence (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = ((6*n+10)(!^6))/10(!^6) = A034724(n+2)/10.
E.g.f.: 1/(1-6*x)^(8/3).

A053100 a(n) = ((6*n+7)(!^6))/7, related to A008542 ((6*n+1)(!^6) sextic, or 6-factorials).

Original entry on oeis.org

1, 13, 247, 6175, 191425, 7082725, 304557175, 14923301575, 820781586625, 50067676784125, 3354534344536375, 244881007151155375, 19345599564941274625, 1644375963020008343125, 149638212634820759224375
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.

Crossrefs

Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), this sequence, A053101, A053102, A053103 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(13/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn=20},CoefficientList[Series[1/(1-6x)^(13/6),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 20 2015 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(13/6))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((6*n+7)(!^6))/7(!^6) = A008542(n+2)/7.
E.g.f.: 1/(1-6*x)^(13/6).

A053102 a(n) = ((6*n+9)(!^6))/9(!^6), related to A034723 (((6*n+3)(!^6))/3 sextic, or 6-factorials).

Original entry on oeis.org

1, 15, 315, 8505, 280665, 10945935, 492567075, 25120920825, 1431892487025, 90209226682575, 6224436641097675, 466832748082325625, 37813452594668375625, 3289770375736148679375, 305948644943461827181875
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(7; m,n) := ((6*n+m)(!^6))/m(!^6), m >= 0, n >= 0.

Crossrefs

Cf. A047058, A008542(n+1), A034689(n+1), A034723(n+1), A034724(n+1), A034787(n+1), A034788(n+1), A053100, A053101, this sequence, A053103 (rows m=0..10).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(15/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(15/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(15/6))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((6*n+9)(!^6))/9(!^6) = A034723(n+2)/9.
E.g.f.: 1/(1-6*x)^(15/6).

A025751 6th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 15, 330, 8415, 232254, 6735366, 202060980, 6213375135, 194685754230, 6191006984514, 199237861137996, 6475230486984870, 212188322111965740, 7002214629694869420, 232473525705869664744, 7758803920433400060831, 260148131449825766745510, 8758320425477467480432170
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(7 - (1 - 36*x)^(1/6))/6, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
    a[n_] := 36^(n-1) * Pochhammer[5/6, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a[0]:1$ a[1]:1$ a[n]:=(6/n)*(6*n-7)*a[n-1]$ makelist(a[n],n,0,1000); /* Tani Akinari, Aug 03 2014 */

Formula

G.f.: (7-(1-36*x)^(1/6))/6.
a(n) = 6^(n-1)*5*A034787(n-1)/n!, n >= 2, where 5*A034787(n-1)=(6*n-7)(!^6) = Product_{j=2..n} (6*j - 7). - Wolfdieter Lang.
a(n) ~ 36^(n-1) / (Gamma(5/6) * n^(7/6)). - Amiram Eldar, Aug 20 2025

A049224 A convolution triangle of numbers obtained from A025751.

Original entry on oeis.org

1, 15, 1, 330, 30, 1, 8415, 885, 45, 1, 232254, 26730, 1665, 60, 1, 6735366, 825858, 58320, 2670, 75, 1, 202060980, 25992252, 2003562, 106560, 3900, 90, 1, 6213375135, 830282805, 68351283, 4038741, 174825, 5355, 105, 1, 194685754230
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A025751(n); a(n,1)= 6^(n-1)*5*A034787(n-1)/n!, n >= 2.
G.f. for m-th column: ((1-(1-36*x)^(1/6))/6)^m.

Crossrefs

Cf. A048966, A049223. Row sums = A025759.

Programs

  • Maxima
    T(n,m):=(m*sum(binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1),k,0,n-i),i,m,n))/n; /* Vladimir Kruchinin, Dec 21 2011 */

Formula

a(n, m) = 6*(6*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f.: [(1-(1-36*x)^(1/6))/6]^m=sum(n>=m, T(n,m)*x^n), T(n,m)=(m*sum(i=m..n, binomial(-m+2*i-1,i-1)*2^(2*n-2*i)*sum(k=0..n-i, binomial(k,n-k-i)*3^(k+i-m)*(-1)^(n-k-i)*binomial(n+k-1,n-1))))/n. - Vladimir Kruchinin, Dec 21 2011
Showing 1-10 of 10 results.