cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A034000 One half of triple factorial numbers.

Original entry on oeis.org

1, 5, 40, 440, 6160, 104720, 2094400, 48171200, 1252451200, 36321084800, 1162274713600, 40679614976000, 1545825369088000, 63378840132608000, 2788668965834752000, 131067441394233344000, 6553372069711667200000, 347328719694718361600000, 19450408302904228249600000
Offset: 1

Views

Author

Keywords

Comments

Preface the series with a 1, then the next term = (1, 4, 7, 10, ...) dot (1, 1, 5, 40, ...). E.g., a(5) = 6160 = (1, 4, 7, 10, 13) dot (1, 1, 5, 40, 440) = (1 + 4 + 35 + 400 + 5720). - Gary W. Adamson, May 17 2010
In other words, a(n) = Sum_{i=0..n-1} b(i)*A016777(i) where b(0)=1 and b(n)=a(n). - Michel Marcus, Dec 18 2022

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(3*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (3*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034000:=n->`if`(n=1, 1, (3*n-1)*A034000(n-1)); seq(A034000(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,(3(n+1)-1)*a}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Aug 22 2015 *)
    Table[3^(n-1)*Pochhammer[5/3, n-1], {n,20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(3*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    def a(n):
        if n==1: return 1
        else: return (3*n-1)*a(n-1)
    [a(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

a(n) = A007661(3n-1)/2 = A008544(n)/2.
2*a(n+1) = (3*n+2)!!! = Product_{j=0..n} (3*j+2), n >= 0.
E.g.f.: (-1 + (1-3*x)^(-2/3))/2.
a(n) = (3*n-1)!/(2*3^(n-1)*(n-1)!*A007559(n)).
a(n) ~ 3/2*2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(7/6)*3^n*e^-n*n^n*{1 + 23/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = 3^n*(n+2/3)!/(2/3)!, with offset 0. - Paul Barry, Sep 04 2005
D-finite with recurrence a(n) + (1-3*n)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
Sum_{n>=1} 1/a(n) = 2*(e/3)^(1/3)*(Gamma(2/3) - Gamma(2/3, 1/3)). - Amiram Eldar, Dec 18 2022

A257620 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 36, 9, 27, 297, 297, 27, 81, 2106, 5346, 2106, 81, 243, 13851, 73386, 73386, 13851, 243, 729, 87480, 868239, 1761264, 868239, 87480, 729, 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187, 6561, 3293622, 95843088, 578903274, 1024762590, 578903274, 95843088, 3293622, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,      3,        9,         27,           81,            243, ...;
    3,     36,      297,       2106,        13851,          87480, ...;
    9,    297,     5346,      73386,       868239,        9388791, ...;
   27,   2106,    73386,    1761264,     34158753,      578903274, ...;
   81,  13851,   868239,   34158753,   1024762590,    25791697782, ...;
  243,  87480,  9388791,  578903274,  25791697782,   928501120152, ...;
  729, 540189, 95843088, 8959544136, 575025893586, 28788563928042, ...;
Triangle T(n,k) begins as:
     1;
     3,      3;
     9,     36,       9;
    27,    297,     297,       27;
    81,   2106,    5346,     2106,       81;
   243,  13851,   73386,    73386,    13851,     243;
   729,  87480,  868239,  1761264,   868239,   87480,    729;
  2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187;
		

Crossrefs

Similar sequences listed in A256890.

Programs

  • Magma
    A257620:= func< n,k | 3^n*EulerianNumber(n+1, k) >;
    [A257620(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,3,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
  • Python
    from sage.all import *
    from sage.combinat.combinat import eulerian_number
    def A257620(n,k): return pow(3,n)*eulerian_number(n+1,k)
    print(flatten([[A257620(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257620(n,k): return t(n-k,k,3,3)
    flatten([[A257620(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
    

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
Sum_{k=0..n} T(n, k) = A034001(n).
From G. C. Greubel, Feb 28 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
T(n, k) = 3^n*A008292(n, k). - G. C. Greubel, Jan 17 2025

A051604 a(n) = (3*n+4)!!!/4!!!.

Original entry on oeis.org

1, 7, 70, 910, 14560, 276640, 6086080, 152152000, 4260256000, 132067936000, 4490309824000, 166141463488000, 6645658539520000, 285763317199360000, 13145112591170560000, 644110516967357440000, 33493746882302586880000, 1842156078526642278400000
Offset: 0

Views

Author

Keywords

Comments

Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=4 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1). (rows m=0..3).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1-3*x)^(7/3), {x, 0, nn}], x]* Range[0,nn]! ] (* G. C. Greubel, Aug 15 2018 *)
    With[{c=Times@@Range[4,1,-3]},Table[(Times@@Range[3n+4,1,-3])/c,{n,0,20}]] (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+4)(!^3))/4(!^3).
E.g.f.: 1/(1-3*x)^(7/3).
Sum_{n>=0} 1/a(n) = 1 + 3*(3*e)^(1/3)*(Gamma(7/3) - Gamma(7/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051605 a(n) = (3*n+5)!!!/5!!!.

Original entry on oeis.org

1, 8, 88, 1232, 20944, 418880, 9634240, 250490240, 7264216960, 232454942720, 8135922995200, 309165073817600, 12675768026521600, 557733793166950400, 26213488278846668800, 1310674413942333440000, 69465743938943672320000, 3890081660580845649920000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=5 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604 (rows m=0..4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==(3n+5)a[n-1]},a,{n,20}] (* Harvey P. Dale, Oct 19 2013 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(8/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(8/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+5)(!^3))/5(!^3).
E.g.f.: 1/(1-3*x)^(8/3).
a(n) = 3^n*(n+5/3)!/(5/3)!. - Paul Barry, Sep 04 2005
a(n) = (3*n+5)*a(n-1). - R. J. Mathar, Nov 13 2012
Sum_{n>=0} 1/a(n) = 1 + 3*(9*e)^(1/3)*(Gamma(8/3) - Gamma(8/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051606 a(n) = (3*n+6)!!!/6!!!, related to A032031 ((3*n)!!! triple factorials).

Original entry on oeis.org

1, 9, 108, 1620, 29160, 612360, 14696640, 396809280, 11904278400, 392841187200, 14142282739200, 551549026828800, 23165059126809600, 1042427660706432000, 50036527713908736000, 2551862913409345536000, 137800597324104658944000, 7854634047473965559808000
Offset: 0

Views

Author

Keywords

Comments

Row m=6 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604-A051609 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(9/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    [seq(n!*3^(n-2)/2, n=2..18)]; # Zerinvary Lajos, Sep 23 2006
    with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T),Prod(T,Z,Epsilon),Prod(T,Z))},labeled]:seq(count(ZL,size=i)/6,i=2..18); # Zerinvary Lajos, Dec 16 2007
    restart: G(x):=(1-3*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..16); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(9/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(9/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+6)(!^3))/6(!^3); e.g.f.: 1/(1-3*x)^3.
a(n) = n!*3^(n-2)/2, n >= 2. - Zerinvary Lajos, Sep 23 2006
Sum_{n>=0} 1/a(n) = 18*exp(1/3) - 24. - Amiram Eldar, Dec 18 2022

A051609 a(n) = (3*n+9)!!!/9!!!, related to A032031 ((3*n)!!! triple factorials).

Original entry on oeis.org

1, 12, 180, 3240, 68040, 1632960, 44089920, 1322697600, 43649020800, 1571364748800, 61283225203200, 2573895458534400, 115825295634048000, 5559614190434304000, 283540323712149504000, 15311177480456073216000, 872737116385996173312000, 52364226983159770398720000
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604-A051608 (rows m=0..8).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(12/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Maple
    restart: G(x):=(1-3*x)^(n-5): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(12/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(12/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+9)(!^3))/9(!^3).
E.g.f.: 1/(1-3*x)^4.
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = (n+3)!*3^(n-1)/2.
Sum_{n>=0} 1/a(n) = 162*exp(1/3) - 225. (End)

A303486 a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).

Original entry on oeis.org

1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
    Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[3^n Pochhammer[n/3, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (3*k + n).
a(n) = 3^n*Gamma(4*n/3)/Gamma(n/3).
a(n) ~ 2^(8*n/3-1)*n^n/exp(n).

A051607 a(n) = (3*n+7)!!!/7!!!.

Original entry on oeis.org

1, 10, 130, 2080, 39520, 869440, 21736000, 608608000, 18866848000, 641472832000, 23734494784000, 949379791360000, 40823331028480000, 1877873227310080000, 92015788138193920000, 4784820983186083840000, 263165154075234611200000, 15263578936363607449600000
Offset: 0

Views

Author

Keywords

Comments

Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=7 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051608, A051609 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(10/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(10/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(10/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+7)(!^3))/7(!^3).
E.g.f.: 1/(1-3*x)^(10/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(3*e)^(1/3)*(Gamma(10/3) - Gamma(10/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051608 a(n) = (3*n+8)!!!/8!!!.

Original entry on oeis.org

1, 11, 154, 2618, 52360, 1204280, 31311280, 908027120, 29056867840, 1016990374400, 38645634227200, 1584471003315200, 69716724145868800, 3276686034855833600, 163834301742791680000, 8683217992367959040000, 486260207572605706240000, 28689352246783736668160000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=8 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051607, A051609 (rows m=0..9).
Cf. A008544.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(11/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(11/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(11/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+8)(!^3))/8(!^3).
E.g.f.: 1/(1-3*x)^(11/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(9*e)^(1/3)*(Gamma(11/3) - Gamma(11/3, 1/3)). - Amiram Eldar, Dec 23 2022

A371077 Square array read by ascending antidiagonals: A(n, k) = 3^n*Pochhammer(k/3, n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 28, 10, 3, 1, 0, 280, 80, 18, 4, 1, 0, 3640, 880, 162, 28, 5, 1, 0, 58240, 12320, 1944, 280, 40, 6, 1, 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1, 0, 24344320, 4188800, 524880, 58240, 6160, 648, 70, 8, 1
Offset: 0

Views

Author

Werner Schulte and Peter Luschny, Mar 10 2024

Keywords

Examples

			The array starts:
  [0] 1,    1,     1,     1,     1,      1,      1,      1,      1, ...
  [1] 0,    1,     2,     3,     4,      5,      6,      7,      8, ...
  [2] 0,    4,    10,    18,    28,     40,     54,     70,     88, ...
  [3] 0,   28,    80,   162,   280,    440,    648,    910,   1232, ...
  [4] 0,  280,   880,  1944,  3640,   6160,   9720,  14560,  20944, ...
  [5] 0, 3640, 12320, 29160, 58240, 104720, 174960, 276640, 418880, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0,       1;
  [2] 0,       1,      1;
  [3] 0,       4,      2,     1;
  [4] 0,      28,     10,     3,    1;
  [5] 0,     280,     80,    18,    4,   1;
  [6] 0,    3640,    880,   162,   28,   5,  1;
  [7] 0,   58240,  12320,  1944,  280,  40,  6, 1;
  [8] 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1;
.
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1    1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2    3    4 ... |
    | 0   4   2        | * |     1 3 6 ... | = | 0   4  10   18   28 ... |
    | 0  28  24   6    |   |       1 4 ... |   | 0  28  80  162  280 ... |
    | 0 280 320 144 24 |   |         1 ... |   | 0 280 880 1944 3640 ... |
    | . . .            |   | . . .         |   | . . .                   |
		

Crossrefs

Family m^n*Pochhammer(k/m, n): A094587 (m=1), A370419 (m=2), this sequence (m=3), A370915 (m=4).
Cf. A303486 (main diagonal), A371079 (row sums of triangle), A371076, A371080.

Programs

  • Maple
    A := (n, k) -> 3^n*pochhammer(k/3, n):
    A := (n, k) -> local j; mul(3*j + k, j = 0..n-1):
    # Read by antidiagonals:
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    seq(lprint([n], seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the generating polynomials of the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-3)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..9)), n = 0..5);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 3*x)^(-k/3);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint([k], EGFcol(k, 8)), k = 0..6);
    # As a matrix product:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371076(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    Table[3^(n-k)*Pochhammer[k/3, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 14 2024 *)
  • SageMath
    def A(n, k): return 3**n * rising_factorial(k/3, n)
    def A(n, k): return (-3)**n * falling_factorial(-k/3, n)

Formula

A(n, k) = Product_{j=0..n-1} (3*j + k).
A(n, k) = A(n+1, k-3) / (k - 3) for k > 3.
A(n, k) = Sum_{j=0..n} Stirling1(n, j)*(-3)^(n - j)* k^j.
A(n, k) = k! * [x^k] (exp(x) * p(n, x)), where p(n, x) are the row polynomials of A371080.
E.g.f. of column k: (1 - 3*t)^(-k/3).
E.g.f. of row n: exp(x) * (Sum_{k=0..n} A371076(n, k) * x^k / (k!)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1/(1 - x/(1 - 3*t)^(1/3)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n /(n! * k!) = exp(x/(1 - 3*t)^(1/3)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371076, i.e., A(n, k) = Sum_{i=0..k} A371076(n, i) * binomial(k, i).
Showing 1-10 of 14 results. Next