cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A303486 a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).

Original entry on oeis.org

1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
    Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[3^n Pochhammer[n/3, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (3*k + n).
a(n) = 3^n*Gamma(4*n/3)/Gamma(n/3).
a(n) ~ 2^(8*n/3-1)*n^n/exp(n).

A051607 a(n) = (3*n+7)!!!/7!!!.

Original entry on oeis.org

1, 10, 130, 2080, 39520, 869440, 21736000, 608608000, 18866848000, 641472832000, 23734494784000, 949379791360000, 40823331028480000, 1877873227310080000, 92015788138193920000, 4784820983186083840000, 263165154075234611200000, 15263578936363607449600000
Offset: 0

Views

Author

Keywords

Comments

Related to A007559(n+1) ((3*n+1)!!! triple factorials).
Row m=7 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051608, A051609 (rows m=0..9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(10/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(10/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(10/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+7)(!^3))/7(!^3).
E.g.f.: 1/(1-3*x)^(10/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(3*e)^(1/3)*(Gamma(10/3) - Gamma(10/3, 1/3)). - Amiram Eldar, Dec 23 2022

A051608 a(n) = (3*n+8)!!!/8!!!.

Original entry on oeis.org

1, 11, 154, 2618, 52360, 1204280, 31311280, 908027120, 29056867840, 1016990374400, 38645634227200, 1584471003315200, 69716724145868800, 3276686034855833600, 163834301742791680000, 8683217992367959040000, 486260207572605706240000, 28689352246783736668160000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=8 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604, A051605, A051606, A051607, A051609 (rows m=0..9).
Cf. A008544.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(11/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(11/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(11/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+8)(!^3))/8(!^3).
E.g.f.: 1/(1-3*x)^(11/3).
Sum_{n>=0} 1/a(n) = 1 + 9*(9*e)^(1/3)*(Gamma(11/3) - Gamma(11/3, 1/3)). - Amiram Eldar, Dec 23 2022

A371077 Square array read by ascending antidiagonals: A(n, k) = 3^n*Pochhammer(k/3, n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 28, 10, 3, 1, 0, 280, 80, 18, 4, 1, 0, 3640, 880, 162, 28, 5, 1, 0, 58240, 12320, 1944, 280, 40, 6, 1, 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1, 0, 24344320, 4188800, 524880, 58240, 6160, 648, 70, 8, 1
Offset: 0

Views

Author

Werner Schulte and Peter Luschny, Mar 10 2024

Keywords

Examples

			The array starts:
  [0] 1,    1,     1,     1,     1,      1,      1,      1,      1, ...
  [1] 0,    1,     2,     3,     4,      5,      6,      7,      8, ...
  [2] 0,    4,    10,    18,    28,     40,     54,     70,     88, ...
  [3] 0,   28,    80,   162,   280,    440,    648,    910,   1232, ...
  [4] 0,  280,   880,  1944,  3640,   6160,   9720,  14560,  20944, ...
  [5] 0, 3640, 12320, 29160, 58240, 104720, 174960, 276640, 418880, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0,       1;
  [2] 0,       1,      1;
  [3] 0,       4,      2,     1;
  [4] 0,      28,     10,     3,    1;
  [5] 0,     280,     80,    18,    4,   1;
  [6] 0,    3640,    880,   162,   28,   5,  1;
  [7] 0,   58240,  12320,  1944,  280,  40,  6, 1;
  [8] 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1;
.
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1    1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2    3    4 ... |
    | 0   4   2        | * |     1 3 6 ... | = | 0   4  10   18   28 ... |
    | 0  28  24   6    |   |       1 4 ... |   | 0  28  80  162  280 ... |
    | 0 280 320 144 24 |   |         1 ... |   | 0 280 880 1944 3640 ... |
    | . . .            |   | . . .         |   | . . .                   |
		

Crossrefs

Family m^n*Pochhammer(k/m, n): A094587 (m=1), A370419 (m=2), this sequence (m=3), A370915 (m=4).
Cf. A303486 (main diagonal), A371079 (row sums of triangle), A371076, A371080.

Programs

  • Maple
    A := (n, k) -> 3^n*pochhammer(k/3, n):
    A := (n, k) -> local j; mul(3*j + k, j = 0..n-1):
    # Read by antidiagonals:
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    seq(lprint([n], seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the generating polynomials of the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-3)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..9)), n = 0..5);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 3*x)^(-k/3);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint([k], EGFcol(k, 8)), k = 0..6);
    # As a matrix product:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371076(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    Table[3^(n-k)*Pochhammer[k/3, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 14 2024 *)
  • SageMath
    def A(n, k): return 3**n * rising_factorial(k/3, n)
    def A(n, k): return (-3)**n * falling_factorial(-k/3, n)

Formula

A(n, k) = Product_{j=0..n-1} (3*j + k).
A(n, k) = A(n+1, k-3) / (k - 3) for k > 3.
A(n, k) = Sum_{j=0..n} Stirling1(n, j)*(-3)^(n - j)* k^j.
A(n, k) = k! * [x^k] (exp(x) * p(n, x)), where p(n, x) are the row polynomials of A371080.
E.g.f. of column k: (1 - 3*t)^(-k/3).
E.g.f. of row n: exp(x) * (Sum_{k=0..n} A371076(n, k) * x^k / (k!)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1/(1 - x/(1 - 3*t)^(1/3)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n /(n! * k!) = exp(x/(1 - 3*t)^(1/3)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371076, i.e., A(n, k) = Sum_{i=0..k} A371076(n, i) * binomial(k, i).

A091540 Rescaled second column A091539 of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 13, 184, 3040, 58360, 1283800, 31917760, 886123840, 27192323200, 914387689600, 33446228569600, 1322364153510400, 56203860301388800, 2555756347720576000, 123819357959385088000, 6367367706293321728000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

A certain difference of two triple factorial sequences.
If offset 0: exponential (also called binomial) convolution of A091541 and A051606.

Crossrefs

Cf. A091541.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3-2*(1-3*x)^(2/3))/(1-3*x)^3 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    Drop[With[{nmax = 50}, CoefficientList[Series[(1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)), {x, 0, nmax}], x]*Range[0, nmax]!],2] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n)= (5*2/fac3(3*n-1))*A091539(n), n>=2, with fac3(3*n-1) := A008544(n) (triple factorials).
E.g.f.: (1-2*x-(1-3*x)^(2/3))/(2*(1-3*x))= (1/2-x+int((1-3*x)^(-1/3), x))/(1-3*x).
E.g.f. with offset 0: (3-2*(1-3*x)^(2/3))/(1-3*x)^3.
a(n)=(fac3(3*n) - 3*fac3(3*n-2))/3! with fac3(3*n) := A032031(n)= n!*3^n and fac3(3*n-2) := A007559(n).
a(n) ~ 3^(n-1) * n! / 2. - Vaclav Kotesovec, Aug 16 2018

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A091541 Four times triple factorials (3*n-2)!!! with leading 1 added.

Original entry on oeis.org

1, 4, 4, 16, 112, 1120, 14560, 232960, 4426240, 97377280, 2434432000, 68164096000, 2113086976000, 71844957184000, 2658263415808000, 106330536632320000, 4572213075189760000, 210321801458728960000, 10305768271477719040000, 535899950116841390080000, 29474497256426276454400000
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

The exponential (or binomial) convolution of a(n) with A051606(n) gives A091540.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(3 - 2*(1 - 3*x)^(2/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[3 - 2*(1 - 3*x)^(2/3), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(3 - 2*(1 - 3*x)^(2/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(0) = 1, a(n) = 4*(3*n-2)!!! = 4*A007559(n-1), n>=1.
E.g.f. 3-2*(1-3*x)^(2/3).
E.g.f. for a(n+1)/4 = A007559(n), n>=0: (1-3*x)^(-1/3).
G.f.: 3-G(0), where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k-2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
From Amiram Eldar, Aug 30 2025: (Start)
a(n) ~ 4 * sqrt(2*Pi) * 3^(n-1) * n^(n-7/6) / (Gamma(1/3) * exp(n)).
Sum_{n>=0} 1/a(n) = (5 + (e/9)^(1/3) * (Gamma(1/3) - Gamma(1/3, 1/3))) / 4. (End)

A153647 a(n) = 3^n*(n + 2)!.

Original entry on oeis.org

2, 18, 216, 3240, 58320, 1224720, 29393280, 793618560, 23808556800, 785682374400, 28284565478400, 1103098053657600, 46330118253619200, 2084855321412864000, 100073055427817472000, 5103725826818691072000, 275601194648209317888000, 15709268094947931119616000
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 30 2008

Keywords

Crossrefs

Cf. A051606.

Programs

Formula

From G. C. Greubel, Mar 03 2021: (Start)
a(n) = 2*A051606(n).
G.f.: 2*Hypergeometric2F0([1, 3]; --; 3*x).
E.g.f.: 2/(1-3*x)^3. (End)
D-finite with recurrence a(n) + 3*(-n-2)*a(n-1) = 0. - R. J. Mathar, Aug 20 2021
From Amiram Eldar, May 31 2025: (Start)
Sum_{n>=0} 1/a(n) = 9*exp(1/3) - 12.
Sum_{n>=0} (-1)^n/a(n) = 9*exp(-1/3) - 6. (End)
Showing 1-8 of 8 results.