cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 60 results. Next

A049503 a(n) = A005130(n)^2.

Original entry on oeis.org

1, 1, 4, 49, 1764, 184041, 55294096, 47675849104, 117727187246656, 831443906113411600, 16779127803917965290000, 966945347924006310543140625, 159045186822042363450404006250000, 74638947576233124529271587010756250000, 99910846988474589225795290311922220324000000
Offset: 0

Views

Author

Keywords

Comments

Expansion of generating function A_{QT}^(1)(4n).
a(n) is the number of cyclically symmetric and self-complementary plane partitions in a (2n)-cube. - Peter J. Taylor, Jun 17 2015

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.16), p. 199.

Crossrefs

Cf. A005130.

Programs

  • Magma
    [n eq 0 select 1 else &*[(Factorial(3*k+1)/Factorial(n+k))^2: k in [0..n-1]]: n in [0..15]]; // Bruno Berselli, Jun 23 2015
    
  • Mathematica
    f[n_]:=Product[((3 k + 1)!/(n + k)!)^2, {k, 0, n-1}]; Table[f[n], {n, 0, 15}] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    a(n) = 2^n*matdet(matrix(n, n, i, j, i--; j--; binomial(i+j, 2*i-j)/2+binomial(i+j, 2*i-j-1))); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from math import prod, factorial
    def A049503(n): return (prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)))**2 # Chai Wah Wu, Feb 02 2022

Formula

a(n) = 2^n * det U(n), where U(n) is the n X n matrix with entry (i, j) equal to binomial(i+j, 2*i-j)/2 + binomial(i+j, 2*i-j-1). [Ciucu]

A160708 Convolution triangle by rows, row sums = the Robbins sequence, A005130 starting with offset 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 18, 3, 3, 18, 192, 18, 9, 18, 192, 3472, 192, 54, 54, 192, 3472, 104964, 3472, 576, 324, 576, 3472, 104964, 5606272, 104964, 10416, 3456, 3456, 10416, 104964, 5306272
Offset: 1

Views

Author

Gary W. Adamson, May 24 2009

Keywords

Comments

The terms are not integral in general, see A160707. - Joerg Arndt, Jan 02 2019
Row sums = the Robbins sequence A005130, starting with offset 1: (1, 2, 7, 42, 429,...).
Right and left borders = A160707, the convolution square root of A005130.

Examples

			First few rows of the triangle =
1;
1, 1;
3, 1, 3;
18, 3, 3, 18;
192, 18, 9, 18, 192;
3472, 192, 54, 54, 192, 3472;
104964, 3472, 576, 324, 576, 3472, 104964;
5606272, 104964, 10416, 3456, 3456, 10416, 104964, 5306272;
...
Example: row 5 = (192, 18, 9, 18, 192) = (192, 18, 3, 1, 1) * (1, 1, 3, 18, 192); where A005130(5) = 429 = (192 + 18 + 9 + 18 + 192).
		

Crossrefs

Formula

Let M = an infinite lower triangular Toeplitz matrix with A160707 in every column: (1, 1, 3, 18, 192, 5472,...); where A160707 = the convolution square root of the Robbins sequence: (1, 2, 7, 42, 429, 7436,...). Let Q = an infinite lower triangular matrix with (1, 1, 3, 18, 192,...) as the main diagonal and the rest zeros. Triangle A160708 = M * Q.

A194827 2-adic valuation of the number of n X n Alternating Sign Matrices (A005130(n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 2, 3, 2, 2, 0, 2, 2, 4, 4, 5, 4, 4, 2, 2, 0, 3, 4, 6, 6, 7, 6, 8, 8, 10, 10, 11, 10, 10, 8, 8, 6, 7, 6, 6, 4, 3, 0, 3, 4, 7, 8, 10, 10, 11, 10, 11, 10, 13, 14, 16, 16, 17, 16, 18, 18, 20, 20, 21, 20, 20, 18, 18, 16, 17, 16, 16, 14, 13, 10, 11, 10, 11, 10, 10
Offset: 1

Views

Author

R. J. Mathar, Sep 03 2011

Keywords

Crossrefs

Programs

  • Maple
    Sp := proc(n,p) add(d,d=convert(n,base,p)) ; end proc:
    nuA005130 := proc(n,p) add(Sp(n+j,p),j=0..n-1)-add(Sp(3*j+1,p),j=0..n-1) ; %/(p-1) ; end proc:
    A194827 := proc(n) nuA005130(n,2) ; end proc:
  • Mathematica
    s[n_] := DigitCount[n, 2, 1]; a[0] = 0; a[n_] := a[n] = a[n - 1] + s[2*n - 2] + s[2*n - 1] - s[n - 1] - s[3*n - 2]; Array[a, 100] (* Amiram Eldar, Feb 21 2021 *)
  • Python
    # a(n) = prod(k=0, n-1, (3k+1)!/(n+k)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k+1)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k)!) prod(k=0, n, 1/(n+k+1))
    # a(n+1)/a(n) = [(3n+1)!/(2n)!] [n!/(2n+1)!]
    n=10000; N=3*n+1; val=[0]*(N+1); exp=2
    while exp <= N:
        for j in range(exp,N+1,exp): val[j] += 1
        exp *= 2
    fac_val=[0]*(N+1)
    for i in range(N): fac_val[i+1] = fac_val[i] + val[i+1]
    res=0
    for i in range(1,n): print(i,res); res += fac_val[3*i+1] + fac_val[i] - fac_val[2*i] - fac_val[2*i+1]
    # Kenny Lau, Jun 09 2018

Formula

a(n) = A007814(A005130(n)).
a(n) = a(n-1) + s(2*n-2) + s(2*n-1) - s(n-1) - s(3*n-2), where s(n) = A000120(n). - Amiram Eldar, Feb 21 2021

A227833 3-adic valuation of A005130(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 3, 5, 5, 3, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 3, 5, 6, 6, 7, 8, 9, 11, 13, 15, 18, 18, 15, 13, 11, 9, 8, 7, 6, 6, 5, 3, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 3, 5, 5, 3, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 3, 5, 6, 6, 7, 8, 9, 11, 13, 15, 18, 19, 18, 18, 18, 18, 19
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2013, based on a suggestion from Victor H. Moll

Keywords

Comments

3^a(n) is the highest power of 3 dividing A005130(n).

Crossrefs

Programs

  • Magma
    A005130:=func; [Valuation(A005130(n),3): n in [0..100]]; // Bruno Berselli, Aug 05 2013
  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n, 3]; a[0] = 0; a[n_] := a[n] = a[n - 1] + (s[2*n - 2] + s[2*n - 1] - s[n - 1] - s[3*n - 2])/2; Array[a, 101, 0] (* Amiram Eldar, Feb 21 2021 *)

Formula

From Amiram Eldar, Feb 21 2021: (Start)
a(n) = A007949(A005130(n)).
a(n) = a(n-1) + (s(2*n-2) + s(2*n-1) - s(n-1) - s(3*n-2))/2, where s(n) = A053735(n). (End)

A160707 Convolution square root of the Robbins sequence, A005130, starting with offset 1.

Original entry on oeis.org

1, 1, 3, 18, 192, 3472, 104964, 5306272, 450215638, 64298445920
Offset: 1

Author

Gary W. Adamson, May 24 2009

Keywords

Comments

Terms are not integral beyond what's shown! - Joerg Arndt, Jan 02 2019

Examples

			Self-convolution = the Robbins sequence, A005130: (1, 2, 7, 42, 429, 7436, ...).
Example: A005130(4) = 42 = (1, 1, 3, 18) dot (18, 3, 1, 1) = (18 + 3 + 3 + 18).
The reversed procedure given (1, 2, 7, 42, ...) for a(4) = 18 = (1/2) * (42 - 2*a(3)) = (1/2) * 36 = 18.
		

Crossrefs

A173312 Partial sums of A005130.

Original entry on oeis.org

1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217
Offset: 0

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Partial sums of Robbins numbers. Partial sums of the number of descending plane partitions whose parts do not exceed n. Partial sums of the number of n X n alternating sign matrices (ASM's). After 2, 11, 53, when is this partial sum again prime, as it is not again prime through a(32)?

Examples

			a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.
		

Programs

  • Mathematica
    Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)
    Accumulate[Table[Product[(3k+1)!/(n+k)!,{k,0,n-1}],{n,0,20}]] (* Harvey P. Dale, Feb 06 2019 *)

Formula

a(n) = Sum_{i=0..n} A005130(i) = Sum_{i=0..n} Product_{k=0..i-1} (3k+1)!/(i+k)!. [corrected by Vaclav Kotesovec, Oct 26 2017]
a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017

A001462 Golomb's sequence: a(n) is the number of times n occurs, starting with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19
Offset: 1

Keywords

Comments

It is understood that a(n) is taken to be the smallest number >= a(n-1) which is compatible with the description.
In other words, this is the lexicographically earliest nondecreasing sequence of positive numbers which is equal to its RUNS transform. - N. J. A. Sloane, Nov 07 2018
Also called Silverman's sequence.
Vardi gives several identities satisfied by A001463 and this sequence.
We can interpret this sequence as a triangle: start with 1; 2,2; 3,3; and proceed by letting the row sum of row m-1 be the number of elements of row m. The partial sums of the row sums give 1, 5, 11, 38, 272, ... Conjecture: this proceeds as Lionel Levine's sequence A014644. See also A113676. - Floor van Lamoen, Nov 06 2005
A Golomb-type sequence, that is, one with the property of being a sequence of run length of itself, can be built over any sequence with distinct terms by repeating each term a corresponding number of times, in the same manner as a(n) is built over natural numbers. See cross-references for more examples. - Ivan Neretin, Mar 29 2015
From Amiram Eldar, Jun 19 2021: (Start)
Named after the American mathematician Solomon Wolf Golomb (1932-2016).
Guy (2004) called it "Golomb's self-histogramming sequence", while in previous editions of his book (1981 and 1994) he called it "Silverman's sequence" after David Silverman. (End)
a(n) is also the number of numbers that occur n times. - Leo Crabbe, Feb 15 2025

Examples

			a(1) = 1, so 1 only appears once. The next term is therefore 2, which means 2 appears twice and so a(3) is also 2 but a(4) must be 3. And so on.
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 4*x^8 + ... - _Michael Somos_, Nov 07 2018
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 10.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E25, p. 347-348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001463 (partial sums) and A262986 (start of first run of length n).
First differences are A088517.
Golomb-type sequences over various substrates (from Glen Whitney, Oct 12 2015):
A000002 and references therein (over periodic sequences),
A109167 (over nonnegative integers),
A080605 (over odd numbers),
A080606 (over even numbers),
A080607 (over multiples of 3),
A169682 (over primes),
A013189 (over squares),
A013322 (over triangular numbers),
A250983 (over integral sums of itself).
Applying "ee Rabot" to this sequence gives A319434.
See also A095114.

Programs

  • Haskell
    a001462 n = a001462_list !! (n-1)
    a001462_list = 1 : 2 : 2 : g 3  where
       g x = (replicate (a001462 x) x) ++ g (x + 1)
    -- Reinhard Zumkeller, Feb 09 2012
    
  • Magma
    [ n eq 1 select 1 else 1+Self(n-Self(Self(n-1))) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    N:= 10000: A001462[1]:= 1: B[1]:= 1: A001462[2]:= 2:
    for n from 2 while B[n-1] <= N do
      B[n]:= B[n-1] + A001462[n];
      for j from B[n-1]+1 to B[n] do A001462[j]:= n end do
    end do:
    seq(A001462[j],j=1..N); # Robert Israel, Oct 30 2012
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - a[a[n - 1]]]; Table[ a[n], {n, 84}] (* Robert G. Wilson v, Aug 26 2005 *)
    GolSeq[n_]:=Nest[(k = 0; Flatten[# /. m_Integer :> (ConstantArray[++k,m])]) &, {1, 2}, n]
    GolList=Nest[(k = 0;Flatten[# /.m_Integer :> (ConstantArray[++k,m])]) &, {1, 2},7]; AGolList=Accumulate[GolList]; Golomb[n_]:=Which[ n <= Length[GolList], GolList[[n]], n <= Total[GolList],First[FirstPosition[AGolList, ?(# > n &)]], True, $Failed] (* _JungHwan Min, Nov 29 2015 *)
  • PARI
    a = [1, 2, 2]; for(n=3, 20, for(i=1, a[n], a = concat(a, n))); a /* Michael Somos, Jul 16 1999 */
    
  • PARI
    {a(n) = my(A, t, i); if( n<3, max(0, n), A = vector(n); t = A[i=2] = 2; for(k=3, n, A[k] = A[k-1] + if( t--==0, t = A[i++]; 1)); A[n])}; /* Michael Somos, Oct 21 2006 */
    
  • Python
    a=[0, 1, 2, 2]
    for n in range(3, 21):a+=[n for i in range(1, a[n] + 1)]
    a[1:] # Indranil Ghosh, Jul 05 2017

Formula

a(n) = phi^(2-phi)*n^(phi-1) + E(n), where phi is the golden number (1+sqrt(5))/2 (Marcus and Fine) and E(n) is an error term which Vardi shows is O( n^(phi-1) / log n ).
a(1) = 1; a(n+1) = 1 + a(n+1-a(a(n))). - Colin Mallows
a(1)=1, a(2)=2 and for a(1) + a(2) + ... + a(n-1) < k <= a(1) + a(2) + ... + a(n) we have a(k)=n. - Benoit Cloitre, Oct 07 2003
G.f.: Sum_{n>0} a(n) x^n = Sum_{k>0} x^a(k). - Michael Somos, Oct 21 2006
a(A095114(n)) = n and a(m) < n for m < A095114(n). - Reinhard Zumkeller, Feb 09 2012 [First inequality corrected from a(m) < m by Glen Whitney, Oct 06 2015]
Conjecture: a(n) >= n^(phi-1) for all n. - Jianing Song, Aug 19 2021
a(n) = A095114(n+1) - A095114(n). - Alan Michael Gómez Calderón, Dec 21 2024 after Ralf Stephan

A006753 Smith (or joke) numbers: composite numbers k such that sum of digits of k = sum of digits of prime factors of k (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086, 1111, 1165, 1219
Offset: 1

Keywords

Comments

Of course primes also have this property, trivially.
a(133809) = 4937775 is the first Smith number historically: 4937775 = 3*5*5*65837 and 4+9+3+7+7+7+5 = 3+5+5+(6+5+8+3+7) = 42, Albert Wilansky coined the term Smith number when he noticed the defining property in the phone number of his brother-in-law Harold Smith: 493-7775.
There are 248483 7-digit Smith numbers, corresponding to US phone numbers without area codes (like 4937775). - Charles R Greathouse IV, May 19 2013
A007953(a(n)) = Sum_{k=1..A001222(a(n))} A007953(A027746(a(n),k)), and A066247(a(n))=1. - Reinhard Zumkeller, Dec 19 2011
3^3, 3^6, 3^9, 3^27 are in the sequence. - Sergey Pavlov, Apr 01 2017
As mentioned by Giovanni Resta, there are no other terms of the form 3^t for 0 < t < 300000 and, probably, no other terms of such form for t >= 300000. It seems that, if there exists any other term of form 3^t with integer t, then t == 0 (mod 3) or, perhaps, t = {3^k; 2*3^k} where k is an integer, k > 10. - Sergey Pavlov, Apr 03 2017

Examples

			58 = 2*29; sum of digits of 58 is 13, sum of digits of 2 + sum of digits of 29 = 2+11 is also 13.
		

References

  • M. Gardner, Penrose Tiles to Trapdoor Ciphers. Freeman, NY, 1989, p. 300.
  • R. K. Guy, Unsolved Problems in the Theory of Numbers, Section B49.
  • C. A. Pickover, "A Brief History of Smith Numbers" in "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning", pp. 247-248, Oxford University Press, 2000.
  • J. E. Roberts, Lure of the Integers, pp. 269-270 MAA 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. D. Spencer, Key Dates in Number Theory History, Camelot Pub. Co. FL, 1995, pp. 94.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.1.14 and 3.1.16 on pages 84-85.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 180.

Programs

  • Haskell
    a006753 n = a006753_list !! (n-1)
    a006753_list = [x | x <- a002808_list,
                        a007953 x == sum (map a007953 (a027746_row x))]
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Maple
    q:= n-> not isprime(n) and (s-> s(n)=add(s(i[1])*i[2], i=
         ifactors(n)[2]))(h-> add(i, i=convert(h, base, 10))):
    select(q, [$1..2000])[];  # Alois P. Heinz, Apr 22 2021
  • Mathematica
    fQ[n_] := !PrimeQ@ n && n>1 && Plus @@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]] }] & /@ FactorInteger@ n] == Plus @@ IntegerDigits@ n; Select[ Range@ 1200, fQ]
  • PARI
    isA006753(n) = if(isprime(n), 0, my(f=factor(n)); sum(i=1,#f[,1], sumdigits(f[i,1])*f[i,2]) == sumdigits(n)); \\ Charles R Greathouse IV, Jan 03 2012; updated by Max Alekseyev, Oct 21 2016
    
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f)
    print(list(filter(ok, range(1220)))) # Michael S. Branicky, Apr 22 2021
  • Sage
    is_A006753 = lambda n: n > 1 and not is_prime(n) and sum(n.digits()) == sum(sum(p.digits())*m for p,m in factor(n)) # D. S. McNeil, Dec 28 2010
    

A025748 3rd-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
Offset: 0

Keywords

Comments

G.f. (with a(0)=0) is series reversion of x - 3*x^2 + 3*x^3.
The Hankel transform of a(n) is A005130(n) * 3^binomial(n,2).

Crossrefs

Apart from the initial 1, identical to A097188.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    A025748 :=proc(n)
            local x;
            coeftayl(4-(1-9*x)^(1/3),x=0,n) ;
            %/3 ;
    end proc: # R. J. Mathar, Nov 01 2012
  • Mathematica
    CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3,{x,0,25}],x] (* Harvey P. Dale, Nov 14 2011 *)
    Flatten[{1,Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])],{n,1,25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
    a[n_] := 9^(n-1) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Aug 20 2025 *)
  • PARI
    a(n)=if(n<1,n==0,polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)),n))
    
  • Sage
    def A025748_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((4 - (1-9*x)^(1/3))/3).list()
    A025748_list(25) # G. C. Greubel, Sep 17 2019

Formula

From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) + 3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
For n >= 1, a(n) = Integral_{x = 0..9} x^n * w(x) dx, where w(x) = 1/(2*sqrt(3)*Pi) * x^(2/3)*(9 - x)^(1/3)/x^2. - Peter Bala, Oct 14 2024
a(n) ~ 9^(n-1) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025

A005156 Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).

Original entry on oeis.org

1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, 41748486581283118, 559463042542694360707, 21363742267675013243931852, 2324392978926652820310084179576, 720494439459132215692530771292602232, 636225819409712640497085074811372777428304
Offset: 0

Keywords

Comments

a(n+1) is the Hankel transform of A006013. - Paul Barry, Jan 20 2007
a(n+1) is the Hankel transform of A025174(n+1). - Paul Barry, Apr 14 2008

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005156 := proc(n) local i,j,t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ),i=1..2*n+1); end;
  • Mathematica
    Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!),{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 07 2011 *)
  • PARI
    a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
    vector(15, n, a(n-1))  \\ Gheorghe Coserea, May 30 2016

Formula

The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.
a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).
a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
Showing 1-10 of 60 results. Next