cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 90 results. Next

A050218 Sums of digits of Smith numbers A006753.

Original entry on oeis.org

4, 4, 9, 13, 13, 13, 4, 13, 4, 13, 13, 13, 13, 13, 18, 13, 13, 15, 13, 15, 13, 13, 13, 13, 18, 21, 15, 13, 15, 15, 18, 15, 15, 18, 15, 13, 17, 18, 15, 22, 15, 15, 15, 22, 13, 15, 13, 22, 22, 15, 4, 13, 13, 13, 13, 15, 17, 18, 13, 15, 15, 13, 13, 22, 17, 18, 21, 22, 13, 15
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; t={}; Do[If[!PrimeQ[n]&&(x=Total[d[n]])==Total[d@tr[n][[1]]*tr[n][[2]],2],AppendTo[t,x]],{n,4,1850}]; t (* Jayanta Basu, Jun 04 2013 *)

Formula

a(n) = A007953(A006753(n)).

Extensions

Offset corrected by Reinhard Zumkeller, Dec 19 2011

A202388 Digital root of Smith numbers A006753.

Original entry on oeis.org

4, 4, 9, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 9, 4, 4, 6, 4, 6, 4, 4, 4, 4, 9, 3, 6, 4, 6, 6, 9, 6, 6, 9, 6, 4, 8, 9, 6, 4, 6, 6, 6, 4, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 6, 8, 9, 4, 6, 6, 4, 4, 4, 8, 9, 3, 4, 4, 6, 4, 9, 9, 4, 4, 9, 4, 9, 8, 9, 4, 4, 6, 9, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 19 2011

Keywords

Comments

a(n) = A010888(A006753(n)); range = {4,6,8,9}.

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; dr[n_]:= NestWhile[Total[d[#]]&,n,#>9&]; tr[n_]:=Transpose[FactorInteger[n]]; t1=Select[Range[4,2.2*10^3],!PrimeQ[#]&&Total[d[#]]==Total[d@tr[#][[1]]*tr[#][[2]],2]&]; Table[dr[n],{n,t1}] (* t1 gives Smith numbers - Jayanta Basu, Jun 04 2013 *)

A059754 Smallest term in any sequence of n consecutive Smith numbers (A006753).

Original entry on oeis.org

4, 728, 73615, 4463535, 15966114, 2050918644, 164736913905, 8090674745553
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 11 2001

Keywords

Examples

			The third number is 73615 since 73615, 73616, 73617 is the first example of 3 consecutive Smith numbers.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section B49.
  • Samuel Yates, Smith Numbers Congruent to 4 (Mod 9), Journal of Recreational Mathematics, Vol. 19(2), 1987.

Crossrefs

Cf. A006753.

Extensions

a(6) from Carlos Rivera, Dec 19 2003
a(7) from Jens Kruse Andersen. Max Alekseyev, Apr 21 2010
a(8) from Max Alekseyev, Oct 11 2010

A202387 Squarefree Smith numbers, cf. A006753.

Original entry on oeis.org

22, 58, 85, 94, 166, 202, 265, 274, 319, 346, 355, 382, 391, 438, 454, 483, 517, 526, 535, 562, 627, 634, 645, 654, 663, 690, 706, 762, 778, 861, 895, 913, 915, 922, 958, 985, 1086, 1111, 1165, 1219, 1255, 1282, 1507, 1581, 1626, 1633, 1642, 1678, 1795, 1822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 19 2011

Keywords

Comments

Intersection of A006753 and A005117;
also squarefree hoax numbers: intersection of A019506 and A005117;
squarefree composite numbers m such that sum of digits of m = sum of digits of all prime factors of m.

Crossrefs

Programs

  • Haskell
    a202387 n = a202387_list !! (n-1)
    a202387_list = [x | x <- a120944_list,
                        a007953 x == sum (map a007953 (a027746_row x))]

A382896 Smith sphenic numbers, i.e., Smith numbers (A006753) that are the product of three distinct prime numbers.

Original entry on oeis.org

438, 483, 627, 645, 654, 663, 762, 861, 915, 1086, 1581, 1626, 1842, 2067, 2265, 2373, 2409, 2679, 2751, 3138, 3246, 3345, 3615, 4173, 4191, 4209, 4974, 5253, 5298, 5397, 5946, 6054, 6315, 6531, 6567, 6585, 6603, 6693, 6702, 6855, 6981, 7026, 7089, 7287
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 08 2025

Keywords

Examples

			438 is a term since 438 = 2 * 3 * 73, so it is the product of three distinct prime numbers (2, 3, and 73) and also a Smith number (4 + 3 + 8 = 2 + 3 + 7 + 3).
		

Crossrefs

Intersection of A006753 and A007304.

A277580 Numbers that are both Smith (A006753) and Lucas-Carmichael (A006972).

Original entry on oeis.org

8164079, 8421335, 21408695, 30071327, 47324639, 77350559, 103727519, 121538879, 134151479, 202767551, 239875559, 287432495, 306871487, 466861199, 560974259, 566019167, 574342145, 592557119, 594633599, 602758079, 677913599, 832477799
Offset: 1

Views

Author

Max Alekseyev, Oct 21 2016

Keywords

Crossrefs

Intersection of A006753 and A006972.

A357841 Smith numbers (A006753) for which the arithmetic derivative (A003415) is also a Smith number.

Original entry on oeis.org

4, 27, 85, 121, 166, 265, 517, 526, 634, 706, 778, 913, 985, 1633, 1822, 1966, 2173, 2218, 2326, 2434, 2605, 2785, 3505, 3802, 3865, 3973, 4306, 4369, 4765, 4918, 5248, 5674, 5818, 5926, 6178, 6385, 7186, 7726, 8185, 8257, 8653, 9193, 9301, 10201, 10489, 10606
Offset: 1

Views

Author

Marius A. Burtea, Oct 20 2022

Keywords

Examples

			4 = A006753(1) and 4' = 4, so 4 is a term.
27 = A006753(3) and 27' = 27, so 27 is a term.
85  = A006753(5) and 85' = 22 = A006753(2), so 85 is a term.
		

Crossrefs

Programs

  • Magma
    sm:=func; f:=func; [n:n in [2..10700]|sm(n) and sm(Floor(f(n)))];
  • Mathematica
    digsum[n_] := Total@IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last[#]*digsum[First@#] & /@ FactorInteger[n]) == digsum[n]; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[10^4], smithQ[#] && smithQ[d[#]] &] (* Amiram Eldar, Oct 21 2022 *)

A019506 Hoax numbers: composite numbers whose digit-sum equals the sum of the digit-sums of its distinct prime factors.

Original entry on oeis.org

22, 58, 84, 85, 94, 136, 160, 166, 202, 234, 250, 265, 274, 308, 319, 336, 346, 355, 361, 364, 382, 391, 424, 438, 454, 456, 476, 483, 516, 517, 526, 535, 562, 627, 634, 644, 645, 650, 654, 660, 663, 690, 702, 706, 732, 735, 762, 778, 855, 860
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Examples

			22 = 2*11 and digit-sum(22) = 4 = digit-sum(2) + digit-sum(11).
		

Crossrefs

Programs

  • Haskell
    a019506 n = a019506_list !! (n-1)
    a019506_list = [x | x <- a002808_list,
                        a007953 x == sum (map a007953 (a027748_row x))]
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Mathematica
    Select[Range[2,1000],!PrimeQ[#]&&Total[Flatten[IntegerDigits/@ Transpose[ FactorInteger[#]][[1]]]]==Total[IntegerDigits[#]]&] (* Harvey P. Dale, Feb 24 2013 *)
  • PARI
    isok(m) = !isprime(m) && (sumdigits(m) == vecsum(apply(sumdigits, factor(m)[,1]))); \\ Michel Marcus, Feb 03 2022

Formula

A007953(a(n)) = sum(A007953(A027748(a(n),k)): k=1..A001221(a(n))) and A066247(a(n)) = 1. [Reinhard Zumkeller, Dec 19 2011]

A178193 Smith numbers of order 4.

Original entry on oeis.org

3777, 7773, 17418, 30777, 53921, 66111, 97731, 111916, 119217, 122519, 128131, 133195, 135488, 138878, 145229, 178814, 180174, 198581, 257376, 269636, 281179, 296396, 317686, 358256, 362996, 366514, 394114, 435777, 457377, 469552, 475856, 502960, 513833
Offset: 1

Views

Author

Paul Weisenhorn, Dec 19 2010

Keywords

Comments

Composite numbers n not in A176670 such that the sum of the 4th power of the digits of n equals the sum of the 4th power of the digits of the prime factors of n (with multiplicity). A176670 lists composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Examples

			3777 = 3*1259 is composite; sum of 4th power of the digits is 3^4 + 7^4 + 7^4 + 7^4 = 7284. Sum of 4th power of the digits of the prime factors 3, 1259 is 3^4 + 1^4 + 2^4 + 5^4 + 9^4 = 7284. The sums are equal, so 3777 is in the sequence.
17418 = 2*3*2903 is composite; sum of 4th power of the digits is 1^4 + 7^4 + 4^4 + 1^4 + 8^4 = 6755. Sum of 4th power of the digits of the prime factors 2, 3, 2903 is 2^4 + 3^4 + 2^4 + 9^4 + 0^4 + 3^4 = 6755. The sums are equal, so 17418 is in the sequence.
269636 = 2*2*67409 is composite; sum of 4th power of the digits is 2^4 + 6^4 + 9^4 + 6^4 + 3^4 + 6^4 = 10546. Sum of 4th power of the digits of the prime factors 2, 2, 67409 (with multiplicity) is 2^4 + 2^4 + 6^4 + 7^4 + 4^4 + 0^4 + 9^4 = 10546. The sums are equal, so 269636 is in the sequence.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178203, A178204.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, fid = Sort@ Flatten[ IntegerDigits@ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ fid[[1]] == 0, fid = Drop[fid, 1]]; id != fid && Plus @@ (id^4) == Plus @@ (fid^4)]; k = 1; lst = {}; While[k < 10^6, If[f Q@ k, AppendTo[lst, k]; Print@ k]; k++]; lst

A176670 Composite numbers having the same digits as their prime factors (with multiplicity), excluding zero digits.

Original entry on oeis.org

1111, 1255, 12955, 17482, 25105, 28174, 51295, 81229, 91365, 100255, 101299, 105295, 107329, 110191, 110317, 117067, 124483, 127417, 129595, 132565, 137281, 145273, 146137, 149782, 163797, 171735, 174082, 174298, 174793, 174982, 193117, 208174, 210181, 217894
Offset: 1

Views

Author

Paul Weisenhorn, Apr 23 2010

Keywords

Comments

Subsequence of A006753 (Smith numbers).
These numbers still need a better name. - Ely Golden, Dec 25 2016
Terms of this sequence never have more zero digits than their prime factors. - Ely Golden, Jan 10 2017

Examples

			n = 25105 = 5*5021; both n and the factorization of n have digits 1, 2, 5, 5; sorted and excluding zeros.
n = 110191 = 101*1091; both n and the factorization of n have digits 1, 1, 1, 1, 9; sorted and excluding zeros.
n = 171735 = 3*5*107*107; both n and the factorization of n have digits 1, 1, 3, 5, 7, 7; sorted and excluding zeros.
		

Crossrefs

Cf. A006753.

Programs

  • Mathematica
    fQ[n_] := Block[{id = Sort@ IntegerDigits@ n, s = Sort@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]]}] & /@ FactorInteger@ n]}, While[ id[[1]] == 0, id = Drop[id, 1]]; While[ s[[1]] == 0, s = Drop[s, 1]]; n > 1 && ! PrimeQ@ n && s == id]; Select[ Range@ 200000, fQ]
    Select[Range[2*10^5], Function[n, And[CompositeQ@ n, Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)
  • Python
    from sympy import factorint, flatten
    def sd(n): return sorted(str(n).replace('0', ''))
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and sd(n) == sorted(flatten(sd(p)*f[p] for p in f))
    print(list(filter(ok, range(220000)))) # Michael S. Branicky, Apr 22 2021
Showing 1-10 of 90 results. Next