cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A050223 Digit sums of hoax numbers A019506.

Original entry on oeis.org

4, 13, 12, 13, 13, 10, 7, 13, 4, 9, 7, 13, 13, 11, 13, 12, 13, 13, 10, 13, 13, 13, 10, 15, 13, 15, 17, 15, 12, 13, 13, 13, 13, 15, 13, 14, 15, 11, 15, 12, 15, 15, 9, 13, 12, 15, 15, 22, 18, 14, 15, 22, 13, 15, 13, 21, 22, 22, 15, 4, 9, 14, 13, 13, 13, 13, 7, 12, 9, 17, 13
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    ishoax(m) = !isprime(m) && (sumdigits(m) == vecsum(apply(sumdigits, factor(m)[, 1]))); \\ A019506
    lista(nn) = apply(sumdigits, select(ishoax, [1..nn])); \\ Michel Marcus, Feb 24 2023

Formula

a(n) = A007953(A019506(n)).

A202393 Digital root of Hoax Numbers A019506.

Original entry on oeis.org

4, 4, 3, 4, 4, 1, 7, 4, 4, 9, 7, 4, 4, 2, 4, 3, 4, 4, 1, 4, 4, 4, 1, 6, 4, 6, 8, 6, 3, 4, 4, 4, 4, 6, 4, 5, 6, 2, 6, 3, 6, 6, 9, 4, 3, 6, 6, 4, 9, 5, 6, 4, 4, 6, 4, 3, 4, 4, 6, 4, 9, 5, 4, 4, 4, 4, 7, 3, 9, 8, 4, 2, 1, 6, 7, 1, 6, 4, 4, 3, 9, 4, 7, 6, 4, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 19 2011

Keywords

Crossrefs

Formula

a(n) = A010888(A019506(n)).

A329935 Numbers k such that k and k+1 are both hoax numbers (A019506).

Original entry on oeis.org

84, 516, 644, 860, 2325, 3344, 4188, 4980, 5268, 5484, 6259, 6603, 6692, 6980, 7051, 7195, 8076, 8420, 9716, 10704, 11774, 12795, 12955, 12956, 13747, 14475, 14715, 14724, 16473, 17148, 17149, 17225, 17661, 19175, 21828, 22143, 22347, 24259, 24272, 24980
Offset: 1

Views

Author

Amiram Eldar, Nov 24 2019

Keywords

Comments

Analogous to A050219 (smaller of Smith brothers) as A019506 (hoax numbers) is analogous to A006753 (Smith numbers).

Examples

			84 is in the sequence since 84 is a hoax number: 84 = 2^2 * 3 * 7 and 8 + 4 = 2 + 3 + 7 = 12, and 85 = 84 + 1 is also a hoax number: 85 = 5 * 17 and 8 + 5 = 5 + 1 + 7 = 13.
		

Crossrefs

Programs

  • Mathematica
    digitSum[n_]  := Total @ IntegerDigits[n]; hoaxQ[n_] := CompositeQ[n] && Total[ digitSum /@ FactorInteger[n][[;; , 1]] ] == digitSum[n]; seq = {}; isHoax1 = hoaxQ[1]; Do[isHoax2 = hoaxQ[n]; If[isHoax1 && isHoax2, AppendTo[seq, n-1]]; isHoax1 = isHoax2, {n, 2, 25000}]; seq

A357034 a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).

Original entry on oeis.org

1, 22, 308, 638, 3696, 4212, 18480, 26400, 55080, 52800, 73920, 108108, 220320, 216216, 275400, 324324, 432432, 550800, 734400, 1908000, 1144800, 1101600, 1377000, 1652400, 3027024, 2203200, 4039200, 2754000, 3304800, 5724000, 6528600, 9180000, 8586000, 5508000
Offset: 0

Views

Author

Marius A. Burtea, Sep 20 2022

Keywords

Examples

			1 has no divisors in A019506, so a(0) = 1;
22 has divisors 1, 2, 11, 22, and 22 = A019506(1), so a(1) = 22.
308 has divisors 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 and 22 = A019506(1), 308 = A019506(14), so a(2) = 308.
		

Crossrefs

Cf. A019506.

Programs

  • Magma
    hoax:=func; a:=[]; for n in [0..33] do k:=1; while #[d:d in Set(Divisors(k)) diff {1}|hoax(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    digitSum[n_] := Total @ IntegerDigits[n]; hoaxQ[n_] := CompositeQ[n] && Total[digitSum /@ FactorInteger[n][[;; , 1]]] == digitSum[n]; f[n_] := DivisorSum[n, 1 &, hoaxQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* Amiram Eldar, Sep 26 2022 *)

A006753 Smith (or joke) numbers: composite numbers k such that sum of digits of k = sum of digits of prime factors of k (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086, 1111, 1165, 1219
Offset: 1

Views

Author

Keywords

Comments

Of course primes also have this property, trivially.
a(133809) = 4937775 is the first Smith number historically: 4937775 = 3*5*5*65837 and 4+9+3+7+7+7+5 = 3+5+5+(6+5+8+3+7) = 42, Albert Wilansky coined the term Smith number when he noticed the defining property in the phone number of his brother-in-law Harold Smith: 493-7775.
There are 248483 7-digit Smith numbers, corresponding to US phone numbers without area codes (like 4937775). - Charles R Greathouse IV, May 19 2013
A007953(a(n)) = Sum_{k=1..A001222(a(n))} A007953(A027746(a(n),k)), and A066247(a(n))=1. - Reinhard Zumkeller, Dec 19 2011
3^3, 3^6, 3^9, 3^27 are in the sequence. - Sergey Pavlov, Apr 01 2017
As mentioned by Giovanni Resta, there are no other terms of the form 3^t for 0 < t < 300000 and, probably, no other terms of such form for t >= 300000. It seems that, if there exists any other term of form 3^t with integer t, then t == 0 (mod 3) or, perhaps, t = {3^k; 2*3^k} where k is an integer, k > 10. - Sergey Pavlov, Apr 03 2017

Examples

			58 = 2*29; sum of digits of 58 is 13, sum of digits of 2 + sum of digits of 29 = 2+11 is also 13.
		

References

  • M. Gardner, Penrose Tiles to Trapdoor Ciphers. Freeman, NY, 1989, p. 300.
  • R. K. Guy, Unsolved Problems in the Theory of Numbers, Section B49.
  • C. A. Pickover, "A Brief History of Smith Numbers" in "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning", pp. 247-248, Oxford University Press, 2000.
  • J. E. Roberts, Lure of the Integers, pp. 269-270 MAA 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. D. Spencer, Key Dates in Number Theory History, Camelot Pub. Co. FL, 1995, pp. 94.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.1.14 and 3.1.16 on pages 84-85.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 180.

Crossrefs

Programs

  • Haskell
    a006753 n = a006753_list !! (n-1)
    a006753_list = [x | x <- a002808_list,
                        a007953 x == sum (map a007953 (a027746_row x))]
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Maple
    q:= n-> not isprime(n) and (s-> s(n)=add(s(i[1])*i[2], i=
         ifactors(n)[2]))(h-> add(i, i=convert(h, base, 10))):
    select(q, [$1..2000])[];  # Alois P. Heinz, Apr 22 2021
  • Mathematica
    fQ[n_] := !PrimeQ@ n && n>1 && Plus @@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]] }] & /@ FactorInteger@ n] == Plus @@ IntegerDigits@ n; Select[ Range@ 1200, fQ]
  • PARI
    isA006753(n) = if(isprime(n), 0, my(f=factor(n)); sum(i=1,#f[,1], sumdigits(f[i,1])*f[i,2]) == sumdigits(n)); \\ Charles R Greathouse IV, Jan 03 2012; updated by Max Alekseyev, Oct 21 2016
    
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f)
    print(list(filter(ok, range(1220)))) # Michael S. Branicky, Apr 22 2021
  • Sage
    is_A006753 = lambda n: n > 1 and not is_prime(n) and sum(n.digits()) == sum(sum(p.digits())*m for p,m in factor(n)) # D. S. McNeil, Dec 28 2010
    

A036920 Composite numbers n such that digit sum of n equals digit sum of sum of its prime factors (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 94, 105, 114, 121, 150, 166, 202, 204, 222, 224, 265, 274, 315, 342, 346, 355, 382, 438, 445, 450, 454, 517, 526, 540, 562, 612, 634, 640, 706, 841, 852, 913, 915, 922, 1068, 1086, 1111, 1120, 1122, 1138, 1165, 1185, 1200, 1219, 1221, 1230
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    ds[n_]:=Total[IntegerDigits[n]]; t={}; Do[If[!PrimeQ[n]&&ds[n]==ds[Total[ Times@@@FactorInteger[n]]],AppendTo[t,n]],{n,4,1230}]; t (* Jayanta Basu, Jun 04 2013 *)

Extensions

Title made more precise by Sean A. Irvine, Nov 30 2020

A036921 Numbers n such that digit sum of n equals digit sum of 'juxtaposition' and 'sum' of its prime factors (counted with multiplicity).

Original entry on oeis.org

4, 22, 27, 94, 121, 166, 202, 265, 274, 346, 355, 382, 438, 454, 517, 526, 562, 634, 706, 852, 913, 915, 922, 1086, 1111, 1165, 1219, 1255, 1282, 1507, 1626, 1633, 1642, 1822, 1894, 1903, 1966, 2067, 2155, 2173, 2182, 2227, 2265, 2326, 2362, 2409, 2434
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; co[n_,k_]:=Nest[Flatten[d[{#,n}]]&,n,k-1]; t={}; Do[If[!PrimeQ[n]&&Total[d[n]]==Total[d[Total[Times@@@(x=FactorInteger[n])]]]==Total[Flatten[d[co@@@x]]],AppendTo[t,n]],{n,4,2435}]; t (* Jayanta Basu, Jun 04 2013 *)

A202387 Squarefree Smith numbers, cf. A006753.

Original entry on oeis.org

22, 58, 85, 94, 166, 202, 265, 274, 319, 346, 355, 382, 391, 438, 454, 483, 517, 526, 535, 562, 627, 634, 645, 654, 663, 690, 706, 762, 778, 861, 895, 913, 915, 922, 958, 985, 1086, 1111, 1165, 1219, 1255, 1282, 1507, 1581, 1626, 1633, 1642, 1678, 1795, 1822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 19 2011

Keywords

Comments

Intersection of A006753 and A005117;
also squarefree hoax numbers: intersection of A019506 and A005117;
squarefree composite numbers m such that sum of digits of m = sum of digits of all prime factors of m.

Crossrefs

Programs

  • Haskell
    a202387 n = a202387_list !! (n-1)
    a202387_list = [x | x <- a120944_list,
                        a007953 x == sum (map a007953 (a027746_row x))]

A329936 Binary hoax numbers: composite numbers k such that sum of bits of k equals the sum of bits of the distinct prime divisors of k.

Original entry on oeis.org

4, 8, 9, 15, 16, 32, 45, 49, 50, 51, 55, 64, 75, 85, 100, 117, 126, 128, 135, 153, 159, 162, 171, 185, 190, 200, 205, 207, 215, 222, 225, 238, 246, 249, 252, 253, 256, 287, 303, 319, 324, 333, 338, 350, 369, 374, 378, 380, 400, 407, 438, 442, 444, 469, 471
Offset: 1

Views

Author

Amiram Eldar, Nov 24 2019

Keywords

Comments

Analogous to A278909 (binary Smith numbers) as A019506 (hoax numbers) is analogous to A006753 (Smith numbers).
Includes all the powers of 2 except for 1 and 2.

Examples

			4 = 2^2 is in the sequence since the binary representation of 4 is 100 and 1 + 0 + 0 = 1, and the binary representation of 2 is 10 and 1 + 0 = 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
    if isprime(n) then return false fi;
    convert(convert(n,base,2),`+`) = add(convert(convert(t,base,2),`+`),t=numtheory:-factorset(n))
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Nov 28 2019
  • Mathematica
    binWt[n_] := Total @ IntegerDigits[n, 2]; binHoaxQ[n_] := CompositeQ[n] && Total[binWt /@ FactorInteger[n][[;; , 1]]] == binWt[n]; Select[Range[500], binHoaxQ]
  • PARI
    is(n)= my(f=factor(n)[,1]); sum(i=1,#f, hammingweight(f[i]))==hammingweight(n) && !isprime(n) \\ Charles R Greathouse IV, Nov 28 2019

A036924 Digit sum of composite even number equals digit sum of juxtaposition of its prime factors (counted with multiplicity).

Original entry on oeis.org

4, 22, 58, 94, 166, 202, 274, 346, 378, 382, 438, 454, 526, 562, 576, 588, 634, 636, 648, 654, 666, 690, 706, 728, 762, 778, 852, 922, 958, 1086, 1282, 1284, 1376, 1626, 1642, 1678, 1736, 1776, 1822, 1842, 1858, 1872, 1894, 1908, 1952, 1962, 1966, 2038
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Comments

Even Smith numbers. - Robert Israel, Aug 24 2024

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      convert(convert(n,base,10),`+`) = convert(map(t -> t[2]*convert(convert(t[1],base,10),`+`), F),`+`)
    end proc:
    select(filter, [seq(i,i=4..10000,2)]); # Robert Israel, Aug 24 2024
  • Mathematica
    d[n_] := IntegerDigits[n]; co[n_,k_] := Nest[Flatten[d[{#,n}]]&, n, k-1]; t={}; Do[If[!PrimeQ[n] && Total[d[n]] == Total[Flatten[d[co@@@FactorInteger[n]]]], AppendTo[t,n]], {n,4,2040,2}]; t (* Jayanta Basu, Jun 04 2013 *)

Extensions

Title made more precise by Sean A. Irvine, Nov 30 2020
Showing 1-10 of 19 results. Next