cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).

Original entry on oeis.org

1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0

Views

Author

Keywords

Comments

Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
  • C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
    
  • Maple
    A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end;
    # Bill Gosper's approximation (for n>0):
    a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
  • Mathematica
    f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
    a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
    
  • Python
    from math import prod, factorial
    def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022

Formula

a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021

A194827 2-adic valuation of the number of n X n Alternating Sign Matrices (A005130(n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 2, 3, 2, 2, 0, 2, 2, 4, 4, 5, 4, 4, 2, 2, 0, 3, 4, 6, 6, 7, 6, 8, 8, 10, 10, 11, 10, 10, 8, 8, 6, 7, 6, 6, 4, 3, 0, 3, 4, 7, 8, 10, 10, 11, 10, 11, 10, 13, 14, 16, 16, 17, 16, 18, 18, 20, 20, 21, 20, 20, 18, 18, 16, 17, 16, 16, 14, 13, 10, 11, 10, 11, 10, 10
Offset: 1

Views

Author

R. J. Mathar, Sep 03 2011

Keywords

Crossrefs

Programs

  • Maple
    Sp := proc(n,p) add(d,d=convert(n,base,p)) ; end proc:
    nuA005130 := proc(n,p) add(Sp(n+j,p),j=0..n-1)-add(Sp(3*j+1,p),j=0..n-1) ; %/(p-1) ; end proc:
    A194827 := proc(n) nuA005130(n,2) ; end proc:
  • Mathematica
    s[n_] := DigitCount[n, 2, 1]; a[0] = 0; a[n_] := a[n] = a[n - 1] + s[2*n - 2] + s[2*n - 1] - s[n - 1] - s[3*n - 2]; Array[a, 100] (* Amiram Eldar, Feb 21 2021 *)
  • Python
    # a(n) = prod(k=0, n-1, (3k+1)!/(n+k)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k+1)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k)!) prod(k=0, n, 1/(n+k+1))
    # a(n+1)/a(n) = [(3n+1)!/(2n)!] [n!/(2n+1)!]
    n=10000; N=3*n+1; val=[0]*(N+1); exp=2
    while exp <= N:
        for j in range(exp,N+1,exp): val[j] += 1
        exp *= 2
    fac_val=[0]*(N+1)
    for i in range(N): fac_val[i+1] = fac_val[i] + val[i+1]
    res=0
    for i in range(1,n): print(i,res); res += fac_val[3*i+1] + fac_val[i] - fac_val[2*i] - fac_val[2*i+1]
    # Kenny Lau, Jun 09 2018

Formula

a(n) = A007814(A005130(n)).
a(n) = a(n-1) + s(2*n-2) + s(2*n-1) - s(n-1) - s(3*n-2), where s(n) = A000120(n). - Amiram Eldar, Feb 21 2021
Showing 1-2 of 2 results.