cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025750 5th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 10, 150, 2625, 49875, 997500, 20662500, 439078125, 9513359375, 209293906250, 4661546093750, 104884787109375, 2380077861328125, 54401779687500000, 1251240932812500000, 28934946571289062500, 672311993862304687500, 15687279856787109375000, 367412607172119140625000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(6-(1-25x)^(1/5))/5,{x,0,20}],x] (* Harvey P. Dale, Dec 06 2012 *)
    a[0] = 1; a[n_] := ((-5)^(n - 1)*Sum[5^(n - k)*StirlingS1[n, k], {k, 1, n}])/n!; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 19 2013, after Vladimir Kruchinin *)
    a[n_] := 25^(n-1) * Pochhammer[4/5, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=if n=0 then 1 else (sum((-1)^(n-k-1)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i),i,j,n-k+j-1),j,0,k),k,0,n-1))/(n); /* Vladimir Kruchinin, Dec 10 2011 */
    
  • Maxima
    a(n):=if n=0 then 1 else -binomial(1/5,n)*(-25)^n/5; /* Tani Akinari, Sep 17 2015 */

Formula

G.f.: (6-(1-25*x)^(1/5))/5.
a(n) = 5^(n-1)*4*A034301(n-1)/n!, n >= 2, where 4*A034301(n-1) = (5*n-6)(!^5) = Product_{j=2..n} (5*j-6). - Wolfdieter Lang
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n+k-1,n-1) * Sum_{j=0..k} 2^j*binomial(k,j) * Sum_{i=j..n-k+j-1} binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1)*5^(3*(k-j)+i)/n, n > 0, a(0) = 1. - Vladimir Kruchinin, Dec 10 2011
a(n) = ((-5)^(n-1)*Sum_{k=1..n} (5)^(n-k)*stirling1(n,k))/n!, n>0, a(0) = 1. - Vladimir Kruchinin, Mar 19 2013
From Karol A. Penson, Feb 05 2025: (Start)
a(n) without the initial 1 (i.e., a(n) for n >= 1) is given by
a(n+1) = 5^(2*n)*gamma(n + 4/5)/(gamma(4/5)*(n + 1)!), n >= 0.
a(n+1) = Integral_{x=0..25} x^n*W(x) dx, n >= 0,
where W(x) = sin(Pi/5)*5^(2/5)*(1 - x/25)^(1/5)/(5*Pi*x^(1/5)). W(x) is a positive function on x = (0, 25), is singular at x = 0 with the singularity (x)^(-1/5), and it goes to zero at x = 25. (End)
a(n) ~ 25^(n-1) / (Gamma(4/5) * n^(6/5)). - Amiram Eldar, Aug 20 2025