cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025756 3rd-order Vatalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 4, 22, 139, 949, 6808, 50548, 384916, 2988418, 23559826, 188061592, 1516680130, 12337999870, 101111413540, 833914857316, 6916004156083, 57638242134229, 482444724374734, 4053815358183454, 34181335453533439
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of triangle A048966, n > 0.

Programs

  • Maple
    A025756 := proc(n)
        coeftayl( 3/(2+(1-9*x)^(1/3)), x=0, n);
    end proc:
    seq(A025756(n), n=0..30); # Wesley Ivan Hurt, Aug 02 2014
  • Mathematica
    Table[SeriesCoefficient[3/(2+(1-9*x)^(1/3)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • Maxima
    a[0]:1$ a[n]:=(1/n)*((9*n-6)*a[n-1]-2*sum(a[k]*a[n-1-k], k, 0, n-1))$ makelist(a[n],n,0,1000); /* Tani Akinari, Aug 02 2014 */

Formula

G.f.: 3 / (2+(1-9*x)^(1/3)).
a(n) = Sum_{m=1..n-1} (m/n) * Sum_{k=1..n-m} binomial(k,n-m-k) * 3^k * (-1)^(n-m-k) * binomial(n+k-1,n-1) + 1. - Vladimir Kruchinin, Feb 08 2011
Conjecture: n*(n-1)*a(n) -(n-1)*(19*n-36)*a(n-1) +9*(11*n^2-51*n+60)*a(n-2) -9*(3*n-7)*(3*n-8)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 9^n/(4*Gamma(2/3)*n^(4/3)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (-1)^(n+1) * 3^(2*n+1) * Sum_{k>=0} (-1/2)^(k+1) * binomial(k/3,n). - Seiichi Manyama, Aug 04 2024