cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025767 Expansion of 1/((1-x)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 40, 43, 45, 48, 51, 54, 57, 60, 63, 67, 70, 73, 77, 81, 84, 88, 92, 96, 100, 104, 108, 113, 117, 121, 126, 131, 135, 140, 145, 150, 155, 160, 165, 171, 176, 181, 187, 193, 198
Offset: 0

Views

Author

Keywords

Comments

Apply the Riordan array (1/(1-x^4),x) to floor((n+3)/3). - Paul Barry, Jan 20 2006
Number of partitions of n into parts 1, 3, and 4. - David Neil McGrath, Aug 30 2014
Also, a(n-4) is equal to the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is odd or vice versa (see below example). - John M. Campbell, Jan 29 2016
With four 0's prepended and offset 0, a(n) is the number of partitions of n into four parts whose 2nd and 3rd largest parts are equal. - Wesley Ivan Hurt, Jan 05 2021

Examples

			The a(4)=3 partitions of 4 into parts 1, 3, and 4 are (4), (3,1), and (1,1,1,1). - _David Neil McGrath_, Aug 30 2014
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n=12, there are a(n-4)=a(8)=6 partitions mu of n=12 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is odd or vice versa:
(10,1,1) |- n
(8,3,1) |- n
(7,3,2) |- n
(6,5,1) |- n
(6,3,3) |- n
(5,5,2) |- n
(End)
		

Crossrefs

A008621(n) = A002265(n+4) = a(n) - a(n-3).

Programs

  • Magma
    [Floor(n^2/24 + n/3 + 1): n in [0..70]]; // Vincenzo Librandi, Aug 31 2014
  • Maple
    A056594 := proc(n) op(1+(n mod 4),[1,0,-1,0]) ; end proc:
    A061347 := proc(n) op(1+(n mod 3),[-2,1,1]) ; end proc:
    A025767 := proc(n) n^2/24+n/3+83/144+(-1)^n/16 +A061347(n+1)/9 +A056594(n)/4 ; end proc: # R. J. Mathar, Mar 31 2011
  • Mathematica
    Table[Floor[n^2/24 + n/3 + 1], {n, 0, 60}] (* Vincenzo Librandi, Aug 31 2014 *)
  • PARI
    a(n)=if(n<0,0,(n^2+8*n)\24+1)
    
  • PARI
    {a(n) = round( ((n + 4)^2 - 1) / 24 )}; /* Michael Somos, Nov 09 2007 */
    
  • PARI
    Vec(1/((1-x)*(1-x^3)*(1-x^4)) + O(x^80)) \\ Michel Marcus, Jan 29 2016
    

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)).
a(n) = floor(n^2/24+n/3+1).
a(n) = Sum_{k=0..floor(n/4)} floor((n-4*k+3)/3). - Paul Barry, Jan 20 2006
Euler transform of length 4 sequence [1, 0, 1, 1]. - Michael Somos, Nov 09 2007
a(n) = a(-8 - n) for all n in Z. - Michael Somos, Nov 09 2007
a(n) = n^2/24 + n/3 + 83/144 + (-1)^n/16 + A061347(n+1)/9 + A056594(n)/4. - R. J. Mathar, Mar 31 2011
a(n) = a(n-1)+a(n-3)-a(n-5)-a(n-7)+a(n-8). - David Neil McGrath, Aug 30 2014
a(n) = Sum_{k=1..floor((n+4)/4)} Sum_{j=k..floor((n+4-k)/3)} Sum_{i=j..floor((n+4-j-k)/2)} [j = i], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
a(n)-a(n-1) = A008679(n). - R. J. Mathar, Jun 23 2021
a(n)-a(n-4) = A008620(n). - R. J. Mathar, Jun 23 2021