cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026135 Number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120.

Original entry on oeis.org

1, 2, 5, 14, 39, 110, 312, 890, 2550, 7334, 21161, 61226, 177575, 516114, 1502867, 4383462, 12804429, 37452870, 109682319, 321563658, 943701141, 2772060618, 8149661730, 23978203662, 70600640796, 208014215066, 613266903927
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of rows of consecutive peaks in all Motzkin (n+2)-paths. For example, with U=upstep, D=downstep, F=flatstep, the path FU(UD)FU(UDUDUD)DD(UD) contains 3 rows of peaks (in parentheses). The 9 Motzkin 4-paths are FFFF, FF(UD), F(UD)F, FUFD, (UD)FF, (UDUD), UFDF, UFFD, U(UD)D, containing a total of 5 rows of peaks and so a(2)=5. - David Callan, Aug 16 2006

Crossrefs

First differences are in A025566, second differences in A005773.
Pairwise sums of A025179.

Programs

  • Mathematica
    CoefficientList[Series[((x - 1)^2*((1 + x)/(1 - 3 x))^(1/2) + x^2 - 1)/(2*x^2), {x,0,50}], x] (* G. C. Greubel, May 22 2017 *)
  • PARI
    x='x+O('x^50); Vec(((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2)) \\ G. C. Greubel, May 22 2017

Formula

a(n) = Sum_{k=0..n} binomial(n-1, k-1)*binomial(k+1, floor((k+1)/2)). - Vladeta Jovovic, Sep 18 2003
G.f.: ((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2). - David Callan, Aug 16 2006
G.f. = (1+z)*(1+z^2)/(1-z) where z=x*A001006(x). [From R. J. Mathar, Jul 07 2009]
Conjecture: (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n-2)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013

Extensions

More terms from David Callan, Aug 16 2006
Typo in a(19) corrected by R. J. Mathar, Jul 07 2009