A026274 Greatest k such that s(k) = n, where s = A026272.
3, 5, 8, 11, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 39, 42, 45, 47, 50, 52, 55, 58, 60, 63, 66, 68, 71, 73, 76, 79, 81, 84, 87, 89, 92, 94, 97, 100, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 128, 131, 134, 136, 139, 141, 144
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Hung Viet Chu, Difference in the Number of Summands in the Zeckendorf Partitions of Consecutive Integers, arXiv:2010.15592 [math.NT], 2020.
- Michel Dekking, Points of increase of the sum of digits function of the base phi expansion, arXiv:2003.14125 [math.CO], 2020.
- F. Michel Dekking, The sum of digits functions of the Zeckendorf and the base phi expansions, Theoretical Computer Science (2021) Vol. 859, 70-79.
Programs
-
Haskell
a026274 n = a026274_list !! (n-1) a026274_list = map (subtract 1) $ tail $ filter ((== 1) . a035612) [1..] -- Reinhard Zumkeller, Jul 20 2015
-
Mathematica
r=(1+Sqrt[5])/2; a[n_]:=Floor[r*r*(n+2r-3)]; Table[a[n],{n,200}] Table[Floor[GoldenRatio^2 (n+2*GoldenRatio-3)],{n,60}] (* Harvey P. Dale, Dec 23 2022 *)
-
PARI
a(n)=my(w=quadgen(20),phi=(1+w)/2); phi^2*(n+2*phi-3)\1 \\ Charles R Greathouse IV, Nov 10 2021
-
Python
from math import isqrt def A026274(n): return (n+1+isqrt(5*(n+1)**2)>>1)+n-1 # Chai Wah Wu, Aug 17 2022
Formula
a(n) = floor(r*r*(n+2r-3)), where r = (1+sqrt(5))/2 = A001622. [Corrected by Tom Edgar, Jan 30 2015]
a(n) = 3*n - floor[(n+1)/(1+phi)], phi = (1+sqrt(5))/2. - Joshua Tobin (tobinrj(AT)tcd.ie), May 31 2008
a(n) = A003622(n+1) - 1 for n>1 (conjectured). - Michel Marcus, Oct 30 2020
This conjectured formula follows directly from the formula a(n) = floor((n+1)*r^2)-2 in my Mar 12 2018 comment above. - Michel Dekking, Oct 31 2020
Extensions
Extended by Clark Kimberling, Jan 14 2011
Comments